已知2x²+xy+y²=1求x²+3xy的最大值?
展开全部
分析:根据A=2x2-3xy+y2,B=x2-2xy+y2,列出A+B,A-B的式子,再去括号,合并同类项即可.
解答:解:∵A=2x2-3xy+y2,B=x2-2xy+y2,
∴A+B=(2x2-3xy+y2)+(x2-2xy+y2)
=2x2-3xy+y2+x2-2xy+y2
=3x2-5xy+2y2;
A-B=(2x2-3xy+y2)-(x2-2xy+y2)
=2x2-3xy+y2-x2+2xy-y2
=x2-xy.
点评:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键
解答:解:∵A=2x2-3xy+y2,B=x2-2xy+y2,
∴A+B=(2x2-3xy+y2)+(x2-2xy+y2)
=2x2-3xy+y2+x2-2xy+y2
=3x2-5xy+2y2;
A-B=(2x2-3xy+y2)-(x2-2xy+y2)
=2x2-3xy+y2-x2+2xy-y2
=x2-xy.
点评:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分析:根据A=2x2-3xy+y2,B=x2-2xy+y2,列出A+B,A-B的式子,再去括号,合并同类项即可.
解答:解:∵A=2x2-3xy+y2,B=x2-2xy+y2,
∴A+B=(2x2-3xy+y2)+(x2-2xy+y2)
=2x2-3xy+y2+x2-2xy+y2
=3x2-5xy+2y2;
A-B=(2x2-3xy+y2)-(x2-2xy+y2)
=2x2-3xy+y2-x2+2xy-y2
=x2-xy.
点评:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键
解答:解:∵A=2x2-3xy+y2,B=x2-2xy+y2,
∴A+B=(2x2-3xy+y2)+(x2-2xy+y2)
=2x2-3xy+y2+x2-2xy+y2
=3x2-5xy+2y2;
A-B=(2x2-3xy+y2)-(x2-2xy+y2)
=2x2-3xy+y2-x2+2xy-y2
=x2-xy.
点评:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分析:根据A=2x2-3xy+y2,B=x2-2xy+y2,列出A+B,A-B的式子,再去括号,合并同类项即可.
解答:解:∵A=2x2-3xy+y2,B=x2-2xy+y2,
∴A+B=(2x2-3xy+y2)+(x2-2xy+y2)
=2x2-3xy+y2+x2-2xy+y2
=3x2-5xy+2y2;
A-B=(2x2-3xy+y2)-(x2-2xy+y2)
=2x2-3xy+y2-x2+2xy-y2
=x2-xy.
点评:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键
解答:解:∵A=2x2-3xy+y2,B=x2-2xy+y2,
∴A+B=(2x2-3xy+y2)+(x2-2xy+y2)
=2x2-3xy+y2+x2-2xy+y2
=3x2-5xy+2y2;
A-B=(2x2-3xy+y2)-(x2-2xy+y2)
=2x2-3xy+y2-x2+2xy-y2
=x2-xy.
点评:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分析:根据A=2x2-3xy+y2,B=x2-2xy+y2,列出A+B,A-B的式子,再去括号,合并同类项即可.
解答:解:∵A=2x2-3xy+y2,B=x2-2xy+y2,
∴A+B=(2x2-3xy+y2)+(x2-2xy+y2)
=2x2-3xy+y2+x2-2xy+y2
=3x2-5xy+2y2;
A-B=(2x2-3xy+y2)-(x2-2xy+y2)
=2x2-3xy+y2-x2+2xy-y2
=x2-xy.
点评:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键
解答:解:∵A=2x2-3xy+y2,B=x2-2xy+y2,
∴A+B=(2x2-3xy+y2)+(x2-2xy+y2)
=2x2-3xy+y2+x2-2xy+y2
=3x2-5xy+2y2;
A-B=(2x2-3xy+y2)-(x2-2xy+y2)
=2x2-3xy+y2-x2+2xy-y2
=x2-xy.
点评:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询