求解 两 道 数学几何题

1..AB是圆O的直径,点P是OA上一点玄MN与OA相交于P点(非垂直)AP=2OP=3MP=2倍根号2(符号实在找不到--)OQ垂直MN于Q点求OQ的长... 1..AB是圆O的直径,点P 是OA上一点 玄MN与OA相交于P点(非垂直) AP=2 OP=3 MP=2倍根号2 (符号实在找不到- -)OQ垂直MN于Q点 求OQ 的长 展开
于笔何量
2010-08-25 · TA获得超过692个赞
知道小有建树答主
回答量:695
采纳率:0%
帮助的人:454万
展开全部
在三角形PMO中,0M=OA=AP+PO=5,MP=2sqrt(2),PO=3
三角形PMO的面积S=(1/2)*MP*MO*sin(∠PMO)=1/2*5*2sqrt(2)*sin(∠PMO)
=5*sin(∠PMO)

又S=MP*OQ*1/2=sqrt(2)*OQ
所以:sqrt(2)*OQ=5*sin(∠PMO) (1)

由余弦定理,OP^2=MP^2+OM^2-2MP*OM*cos(∠PMO)
9=8+25-20sqrt(2)*cos(∠PMO) (2)

又sin(∠PMO)^2+cos(∠PMO)^2=1 (3)

同(1)(2)(3)解得OQ=sqrt(7) (根号7)
邰业0hN
2010-08-25 · TA获得超过141个赞
知道答主
回答量:61
采纳率:0%
帮助的人:23.8万
展开全部
1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式