(2013?朝阳区二模)如图,已知四边形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F,G,H分别为B
(2013?朝阳区二模)如图,已知四边形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F,G,H分别为BP,BE,PC的中点.(Ⅰ)求证:FG...
(2013?朝阳区二模)如图,已知四边形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F,G,H分别为BP,BE,PC的中点.(Ⅰ)求证:FG∥平面PDE;(Ⅱ)求证:平面FGH⊥平面AEB;(Ⅲ)在线段PC上是否存在一点M,使PB⊥平面EFM?若存在,求出线段PM的长;若不存在,请说明理由.
展开
1个回答
展开全部
(Ⅰ)证明:因为F,G分别为PB,BE的中点,所以FG∥PE.
又因为FG?平面PED,PE?平面PED,所以,FG∥平面PED.…(4分)
(Ⅱ)因为EA⊥平面ABCD,所以EA⊥CB.
又因为CB⊥AB,AB∩AE=A,所以CB⊥平面ABE.
由已知F,H分别为线段PB,PC的中点,所以FH∥BC,则FH⊥平面ABE.
而FH?平面FGH,所以平面FGH⊥平面ABE.…(9分)
(Ⅲ)在线段PC上存在一点M,使PB⊥平面EFM.证明如下:
在直角三角形AEB中,因为AE=1,AB=2,所以BE=
.
在直角梯形EADP中,因为AE=1,AD=PD=2,所以PE=
,
所以PE=BE.又因为F为PB的中点,所以EF⊥PB.
要使PB⊥平面EFM,只需使PB⊥FM.
因为PD⊥平面ABCD,所以PD⊥CB,又因为CB⊥CD,PD∩CD=D,
所以CB⊥平面PCD,而PC?平面PCD,所以CB⊥PC.
若PB⊥FM,则△PFM∽△PCB,可得
=
.
由已知可求得PB=2
,PF=
,PC=2
,所以PM=
.…(14分)
又因为FG?平面PED,PE?平面PED,所以,FG∥平面PED.…(4分)
(Ⅱ)因为EA⊥平面ABCD,所以EA⊥CB.
又因为CB⊥AB,AB∩AE=A,所以CB⊥平面ABE.
由已知F,H分别为线段PB,PC的中点,所以FH∥BC,则FH⊥平面ABE.
而FH?平面FGH,所以平面FGH⊥平面ABE.…(9分)
(Ⅲ)在线段PC上存在一点M,使PB⊥平面EFM.证明如下:
在直角三角形AEB中,因为AE=1,AB=2,所以BE=
5 |
在直角梯形EADP中,因为AE=1,AD=PD=2,所以PE=
5 |
所以PE=BE.又因为F为PB的中点,所以EF⊥PB.
要使PB⊥平面EFM,只需使PB⊥FM.
因为PD⊥平面ABCD,所以PD⊥CB,又因为CB⊥CD,PD∩CD=D,
所以CB⊥平面PCD,而PC?平面PCD,所以CB⊥PC.
若PB⊥FM,则△PFM∽△PCB,可得
PM |
PB |
PF |
PC |
由已知可求得PB=2
3 |
3 |
2 |
3
| ||
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询