已知圆C1:x2+y2-4x+2y=0与圆C2:x2+y2-2y-4=0.(1)求证两圆相交;(2)求两圆公共弦所在直线的方程;
已知圆C1:x2+y2-4x+2y=0与圆C2:x2+y2-2y-4=0.(1)求证两圆相交;(2)求两圆公共弦所在直线的方程;(3)求过两圆的交点且圆心在直线2x+4y...
已知圆C1:x2+y2-4x+2y=0与圆C2:x2+y2-2y-4=0.(1)求证两圆相交;(2)求两圆公共弦所在直线的方程;(3)求过两圆的交点且圆心在直线2x+4y=1上的圆的方程.
展开
1个回答
展开全部
(1)证明:圆C1:x2+y2-4x+2y=0与圆C2:x2+y2-2y-4=0化为标准方程分别为圆C1:(x-2)2+(y+1)2=5与圆C2:x2+(y-1)2=5
∴C1(2,-1)与圆C2(0,1),半径都为
∴圆心距为0<
=2
<2
∴两圆相交;
(2)解:将两圆的方程作差即可得出两圆的公共弦所在的直线方程,即
(x2+y2-4x+2y)-(x2+y2-2y-4)=0
即x-y-1=0
(3)解:由(2)得y=x-1代入圆C1:x2+y2-4x+2y=0,化简可得2x2-4x-1=0
∴x=
当x=
时,y=
;当x=
∴C1(2,-1)与圆C2(0,1),半径都为
5 |
∴圆心距为0<
(2?0)2+(?1?1)2 |
2 |
5 |
∴两圆相交;
(2)解:将两圆的方程作差即可得出两圆的公共弦所在的直线方程,即
(x2+y2-4x+2y)-(x2+y2-2y-4)=0
即x-y-1=0
(3)解:由(2)得y=x-1代入圆C1:x2+y2-4x+2y=0,化简可得2x2-4x-1=0
∴x=
2±
| ||
2 |
当x=
2+
| ||
2 |
| ||
2 |
为你推荐:
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
- 个人、企业类侵权投诉
- 违法有害信息,请在下方选择后提交
类别
- 色情低俗
- 涉嫌违法犯罪
- 时政信息不实
- 垃圾广告
- 低质灌水
我们会通过消息、邮箱等方式尽快将举报结果通知您。
说明
0/200
提交
取消