A为椭圆x2/25+y2/9=1上任意一点,B为圆(x-1)2+y2=1上任意一点,求AB距离最大值
1个回答
展开全部
解:易知,圆C:(x-1)²+y²=1.的圆心C(1,0),半径r=1.由题意可设点A(5cost,3sint).(t∈R)故问题可化为求点A到圆心C的距离d的取值范围。由两点间距离公式可知,d²=(5cost-1)²+(3sint)²=16[cost-(5/16)]²+(135/16).显然,由-1≤cost≤1可知,135/16≤d²≤36.===>(3√15)/4≤d≤6.数形结合可知,|ab|max=6+1=7.|ab|min=[(3√15)/4]-1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询