根号下x^2+a^2的积分

 我来答
风林网络手游平台
2022-12-01 · 百度认证:四川风林网络科技有限公司官方账号
风林网络手游平台
向TA提问
展开全部

设x=asint,则dx=dasint=acostdt,可以得到:

a^2-x^2

=a^2-a^2sint^2

=a^2cost^2

∫√(a^2-x^2)dx

=∫acost*acostdt

=a^2∫cost^2dt

=a^2∫(cos2t+1)/2dt

=a^2/4∫(cos2t+1)d2t

=a^2/4*(sin2t+2t)

将x=asint代回,得:

∫√(a^2-x^2)dx=x√(a^2-x^2)/2+a^2*arcsin(x/a)/2+C(C为常数)

扩展资料:

常用不定积分公式

1、∫kdx=kx+c

2、∫1/(1+x^2)dx=arctanx+c

3、∫1/√(1-x^2)dx=arcsinx+c

4、∫tanxdx=-In|cosx|+c

5、∫cotxdx=In|sinx|+c

6、∫secxdx=In|secx+tanx|+c

7、∫cscxdx=In|cscx-cotx|+c

8、∫1/√(x^2+a^2)dx=In(x+√(x^2+a^2))+c

鲸志愿
2022-09-30 · 专注大中学生升学规划服务
鲸志愿
向TA提问
展开全部

设x=asint,则dx=dasint=acostdt,可以得到:


a^2-x^2


=a^2-a^2sint^2


=a^2cost^2


∫√(a^2-x^2)dx


=∫acost*acostdt


=a^2∫cost^2dt


=a^2∫(cos2t+1)/2dt


=a^2/4∫(cos2t+1)d2t


=a^2/4*(sin2t+2t)


将x=asint代回,得:


∫√(a^2-x^2)dx

=x√(a^2-x^2)/2+a^2*arcsin(x/a)/2+C(C为常数)


扩展资料:


常用不定积分公式


1、∫k dx=kx+c   


2、∫1/(1+x^2) dx=arctanx+c   


3、∫1/√(1-x^2) dx=arcsinx+c   


4、 ∫tanx dx=-In|cosx|+c   


5 、∫cotx dx=In|sinx|+c   


6、 ∫secx dx=In|secx+tanx|+c   


7 、∫cscx dx=In|cscx-cotx|+c   


8、∫1/√(x^2+a^2) dx=In(x+√(x^2+a^2))+c

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式