齐次线性方程组和非齐次线性方程组的区别
展开全部
1、常数项不同:
齐次线性方程组的常数项全部为零,非齐次方程组的常数项不全为零。
2、表达式不同:
齐次线性方程组表达式 :Ax=0;非齐次方程组程度常数项不全为零: Ax=b。
扩展资料:
齐次线性方程组求解步骤:
1、对系数矩阵A进行初等行变换,将其化为行阶梯形矩阵;
2、若r(A)=r=n(未知量的个数),则原方程组仅有零解,即x=0,求解结束;
若r(A)=r<n(未知量的个数),则原方程组有非零解,进行以下步骤:
3、继续将系数矩阵A化为行最简形矩阵,并写出同解方程组;
4、选取合适的自由未知量,并取相应的基本向量组,代入同解方程组,得到原方程组的基础解系,进而写出通解。
非齐次线性方程组Ax=b的求解步骤:
(1)对增广矩阵B施行初等行变换化为行阶梯形。若R(A)<R(B),则方程组无解。
(2)若R(A)=R(B),则进一步将B化为行最简形。
(3)设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数,即可写出含n-r个参数的通解。
参考资料来源:百度百科-齐次线性方程组
展开全部
齐次线性方程组和非齐次线性方程组的区别如下:
1.齐次线性方程组:常数项全部为零的线性方程组。
如果m<n(行数小于列数,即未知数的数量大于所给方程组数),则齐次线性方程组有非零解。对齐次线性方程组的系数矩阵施行初等行变换化为阶梯型矩阵后,不全为零的行数r(即矩阵的秩)小于等于m(矩阵的行数),若m<n,则一定n>r,则其对应的阶梯型n-r个自由变元,这个n-r个自由变元可取任意取值,从而原方程组有非零解(无穷多个解)。
2.非齐次线性方程组:常数项不全为零的线性方程组。
非齐次线性方程组有解的充分必要条件是:系数矩阵的秩等于增广矩阵的秩,即rank(A)=rank(A, b)(否则为无解)。有唯一解的充要条件是rank(A)=n。有无穷多解的充要条件是rank(A)<n。(rank(A)表示A的秩)
1.齐次线性方程组:常数项全部为零的线性方程组。
如果m<n(行数小于列数,即未知数的数量大于所给方程组数),则齐次线性方程组有非零解。对齐次线性方程组的系数矩阵施行初等行变换化为阶梯型矩阵后,不全为零的行数r(即矩阵的秩)小于等于m(矩阵的行数),若m<n,则一定n>r,则其对应的阶梯型n-r个自由变元,这个n-r个自由变元可取任意取值,从而原方程组有非零解(无穷多个解)。
2.非齐次线性方程组:常数项不全为零的线性方程组。
非齐次线性方程组有解的充分必要条件是:系数矩阵的秩等于增广矩阵的秩,即rank(A)=rank(A, b)(否则为无解)。有唯一解的充要条件是rank(A)=n。有无穷多解的充要条件是rank(A)<n。(rank(A)表示A的秩)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
区别在于常数项是否为零。
非齐次线性方程组:常数项不全为零的线性方程组
例如
x+y+z=1;
2x+y+3z=2;
4x-y+3z=3;
齐次线性方程组:常数项全部为零的线性方程组
例如
x+y+z=0;
2x+y+3z=0;
4x-y+3z=0;
性质
1.齐次线性方程组的两个解的和仍是齐次线性方程组的一组解。
2.齐次线性方程组的解的k倍仍然是齐次线性方程组的解。
3.齐次线性方程组的系数矩阵秩r(A)=n,方程组有唯一零解。
齐次线性方程组的系数矩阵秩r(A)<n,方程组有无数多解。
4. n元齐次线性方程组有非零解的充要条件是其系数行列式为零。等价地,方程组有唯一的零解的充要条件是系数矩阵不为零。(克莱姆法则)
非齐次线性方程组:常数项不全为零的线性方程组
例如
x+y+z=1;
2x+y+3z=2;
4x-y+3z=3;
齐次线性方程组:常数项全部为零的线性方程组
例如
x+y+z=0;
2x+y+3z=0;
4x-y+3z=0;
性质
1.齐次线性方程组的两个解的和仍是齐次线性方程组的一组解。
2.齐次线性方程组的解的k倍仍然是齐次线性方程组的解。
3.齐次线性方程组的系数矩阵秩r(A)=n,方程组有唯一零解。
齐次线性方程组的系数矩阵秩r(A)<n,方程组有无数多解。
4. n元齐次线性方程组有非零解的充要条件是其系数行列式为零。等价地,方程组有唯一的零解的充要条件是系数矩阵不为零。(克莱姆法则)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
常数项【全部】为零的方程组为《齐次》;只要有一个方程常数项不为零,则这个方程组为《非齐次》。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
齐次线性方程组:ax+by=0
非齐次线性方程组:ax+by=n(n是常数)
主要区别就是等号后面,一个是0,一个是常数。
非齐次线性方程组:ax+by=n(n是常数)
主要区别就是等号后面,一个是0,一个是常数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询