如图,点P是等腰直角三角形ABC底边BC上一点,过点P作BA、AC的垂线,垂足是E、F,点D为BC的中点.(1)求

如图,点P是等腰直角三角形ABC底边BC上一点,过点P作BA、AC的垂线,垂足是E、F,点D为BC的中点.(1)求证:DE⊥DF;(2)当点P在BC的延长线上时,DE⊥D... 如图,点P是等腰直角三角形ABC底边BC上一点,过点P作BA、AC的垂线,垂足是E、F,点D为BC的中点.(1)求证:DE⊥DF;(2)当点P在BC的延长线上时,DE⊥DF是否成立?说明理由. 展开
 我来答
爪机粉丝002F5
2014-12-14 · 超过66用户采纳过TA的回答
知道答主
回答量:118
采纳率:0%
帮助的人:138万
展开全部
(1)证明:如图1,连接AD,
∵等腰直角三角形ABC,点D为BC的中点.
∴∠BAC=90°,∠BAD=∠ACB=45°,AD⊥BC,AD=BD=CD=
1
2
BC,
∵PE⊥AB,PF⊥AC,∠BAC=90°,
∴四边形AEPF是矩形,△PFC是等腰直角三角形,
∴AE=PF,PF=FC,
∴AE=FC,
在△AED与△CFD中
AE=CF
∠EAD=∠FCD
AD=DC

∴△AED≌△CFD(SAS),
∴∠ADE=∠CDF,
∵∠ADF+∠CDF=∠ADC=90°,
∴∠ADE+∠ADF=90°,
∴DE⊥DF.

(2)当点P在BC的延长线上时,DE⊥DF成立;理由:
解:如图2,连接AD,
∵等腰直角三角形ABC,点D为BC的中点.
∴∠BAC=90°,∠CAD=∠ACB=45°,AD⊥BC,AD=BD=CD=
1
2
BC,
∴∠PCF=45°,
∴∠DCF=135°,
∵∠CAE=90°
∴∠DAE=∠DAC+∠CAE=45°+90°=135°
∴∠EAD=∠FCD,
∵PE⊥AB,PF⊥AC,AB⊥AC,
∴四边形AEPF是矩形,△PFC是等腰直角三角形,
∴AE=PF,PF=FC,
∴AE=FC,
在△AED与△CFD中
AE=CF
∠EAD=∠FCD
AD=DC

∴△AED≌△CFD(SAS),
∴∠ADE=∠CDF,
∵∠ADF+∠CDF=∠ADC=90°,
∴∠ADE+∠ADF=90°,
∴DE⊥DF.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式