x²+y²=1 ;x²+y²–x+√3y=0.方程组怎么解?
1个回答
展开全部
解:
由x²+y²=1,令x=cosα,y=sinα
x²+y²-x+√3y=0
1-cosα+√3sinα=0
(√3/2)sinα-(1/2)cosα=-1/2
sin(α -π/6)=-1/2
α -π/6=2kπ-π/6或α -π/6=(2k+1)π+π/6,(k∈Z)
α=2kπ或α=2k+ 4π/3,(k∈Z)
α=2kπ时,x=cosα=cos(2kπ)=1,y=sinα=sin(2kπ)=0
α=2kπ +4π/3时,x=cosα=cos(2kπ+ 4π/3)=-1/2,y=sinα=sin(2kπ +4π/3)=-√3/2
综上,得:
x=1,y=0或x=-1/2,y=-√3/2
由x²+y²=1,令x=cosα,y=sinα
x²+y²-x+√3y=0
1-cosα+√3sinα=0
(√3/2)sinα-(1/2)cosα=-1/2
sin(α -π/6)=-1/2
α -π/6=2kπ-π/6或α -π/6=(2k+1)π+π/6,(k∈Z)
α=2kπ或α=2k+ 4π/3,(k∈Z)
α=2kπ时,x=cosα=cos(2kπ)=1,y=sinα=sin(2kπ)=0
α=2kπ +4π/3时,x=cosα=cos(2kπ+ 4π/3)=-1/2,y=sinα=sin(2kπ +4π/3)=-√3/2
综上,得:
x=1,y=0或x=-1/2,y=-√3/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询