设方阵A满足方程A^2-2A+4I=0,证明A+I和A-3I都可逆,并求他们的逆矩阵.

 我来答
科创17
2022-06-06 · TA获得超过5918个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:177万
展开全部
A^2-2A+4I=0
A^2-2A-3I=-7I
(A+I)(A-3I)*(-1/7)=I
所以A+I和A-3I都可逆,
且A+I的逆矩阵为(3I-A)/7
A-3I的逆矩阵为 -(A+I)/7
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式