(1)定义在R上的函数f(x)(f(x)≠0)满足:对任意实数x1,x2,总有f(x1+x2)=f(x1)f(x2),且x>0时...

(1)定义在R上的函数f(x)(f(x)≠0)满足:对任意实数x1,x2,总有f(x1+x2)=f(x1)f(x2),且x>0时,0<f(x)<1,试判断f(x)的单调性... (1)定义在R上的函数f(x)(f(x)≠0)满足:对任意实数x1,x2,总有f(x1+x2)=f(x1)f(x2),且x>0时,0<f(x)<1,试判断f(x)的单调性。
(2)定义在R上的不恒为0的函数f(x)满足:对任意实数x1,x2,都有f(x1x2)=x2f(x1)+x1f(x2),试判断f(x)的奇偶性。
展开
hbc3193034
推荐于2016-12-01 · TA获得超过10.5万个赞
知道大有可为答主
回答量:10.5万
采纳率:76%
帮助的人:1.4亿
展开全部
(1)定义在R上的函数f(x)(f(x)≠0)满足:对任意实数x1,x2,总有f(x1+x2)=f(x1)f(x2),且x>0时,0<f(x)<1,试判断f(x)的单调性。
解:若存在x0,使得f(x0)=0,则
f(x)=f(x-x0+x0)=f(x-x0)f(x0)=0,
这与“x>0时,0<f(x)”矛盾。
∴f(x)=[f(x/2)]^2>0,
设x1<x2,则x2-x1>0,0<f(x2-x1)<1,
∴f(x2)=f(x1+x2-x1)=f(x1)f(x2-x1)<f(x1),
∴f(x)是减函数。

(2)定义在R上的不恒为0的函数f(x)满足:对任意实数x1,x2,都有f(x1x2)=x2f(x1)+x1f(x2),试判断f(x)的奇偶性。
解:令x2=1,得f(x1)=f(x1)+x1f(1),
∴f(1)=0,
令x1=x2=-1,得0=-2f(-1),
∴f(-1)=0,
令x1=x,x2=-1,得f(-x)=-f(x),
∴f(x)是奇函数。
135******72
2010-09-29
知道答主
回答量:43
采纳率:0%
帮助的人:13.8万
展开全部
gf
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
不用CHE
2010-09-29
知道答主
回答量:47
采纳率:0%
帮助的人:0
展开全部
7
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
li65230787lili
2010-09-29
知道答主
回答量:20
采纳率:0%
帮助的人:0
展开全部
f
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式