数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2/n*Sn(n=1,2,3…..)
展开全部
a(n+1)=[(n+2)/n]*Sn
n(S(n+1)-Sn) = (n+2)Sn
nS(n+1) = 2(n+1)Sn
S(n+1)/(n+1) = 2(Sn/n)
=>{Sn/n} 是等比数列, q=2
Sn/n = 2^(n-1) ( S1)
Sn = n.2^(n-1)
for n>=2
an = Sn -S(n-1)
=n.2^(n-1) - (n-1).2^(n-2)
=(n+1).2^(n-2)
4an =4(n+1).2^(n-2)
= (n+1).2^n
=S(n+1)
n(S(n+1)-Sn) = (n+2)Sn
nS(n+1) = 2(n+1)Sn
S(n+1)/(n+1) = 2(Sn/n)
=>{Sn/n} 是等比数列, q=2
Sn/n = 2^(n-1) ( S1)
Sn = n.2^(n-1)
for n>=2
an = Sn -S(n-1)
=n.2^(n-1) - (n-1).2^(n-2)
=(n+1).2^(n-2)
4an =4(n+1).2^(n-2)
= (n+1).2^n
=S(n+1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询