设数列{a n }的前n项和为S n ,且 a 1 =1, S n+1 =4 a n +2(n∈ N * ) ,(Ⅰ)设 b n
设数列{an}的前n项和为Sn,且a1=1,Sn+1=4an+2(n∈N*),(Ⅰ)设bn=an2n,求证:数列{bn}是等差数列;(Ⅱ)求数列{an}的通项公式....
设数列{a n }的前n项和为S n ,且 a 1 =1, S n+1 =4 a n +2(n∈ N * ) ,(Ⅰ)设 b n = a n 2 n ,求证:数列{b n }是等差数列;(Ⅱ)求数列{a n }的通项公式.
展开
(Ⅰ)由s n+1 =4a n +2,得n≥2时s n =4a n-1 +2…(2分) 两式相减得 a n+1 =4a n -4a n-1 …(4分) 等式两边同除以2 n+1 得, = - , 即 = - , 由 b n = 得b n+1 =2b n -b n-1 ,所以b n+1 +b n-1 =2b n . 所以{b n }是等差数列.…(7分) (II)根据等差数列求得 b 1 = = ,S 2 =a 1 +a 2 =4a 1 +2,所以a 2 =5, 所以 b 2 = = ,所以公差d= b 2 - b 1 = - = , 所以 b n = + (n-1)= n- . 代入a n =2 n ?b n 得 a n =(3n-1)? 2 n-2 …(13分) |
收起
为你推荐: