高一数学。函数。
已知函数f(x)=x-2ax+a+1,x∈[0,2](1)当a=1时,用函数单调性定义证明:函数f(x)在[1,2]上是单调增函数;(2)求f(x)的最小值、过程。要看的...
已知函数f(x)=x-2ax+a+1,x∈[0,2]
(1)当a=1时,用函数单调性定义证明:函数f(x)在[1,2]上是单调增函数;
(2)求f(x)的最小值、
过程。要看的懂。。
啊啊啊,错了,是f(x)=x²-2ax+a²+1,x∈[0,2]
囧 展开
(1)当a=1时,用函数单调性定义证明:函数f(x)在[1,2]上是单调增函数;
(2)求f(x)的最小值、
过程。要看的懂。。
啊啊啊,错了,是f(x)=x²-2ax+a²+1,x∈[0,2]
囧 展开
5个回答
展开全部
嗨嗨,人家高一的学生,没学到求导呢,别因为自己懒省事就叫人家不会的办法。。。
(1)
设任意的x1,x2∈[1,2],且x1<x2
则f(x1)-f(x2)=x1²-x2²-2(x1-x2)
=(x1+x2-2) (x1-x2)
此时x1+x2-2>0,x1-x2<0,所以f(x1)-f(x2)<0
证明结束
(2)f(x)=(x-a)²+1
所以a<0的时候,f(x)单调增加,最小值为f(0)=a²+1
0≤a≤2的时候,f(x)先单调递减再单调增加,最小值为f(a)=1
a>2的时候,f(x)单调减少,最小值为f(2)=a²-4a+5
(1)
设任意的x1,x2∈[1,2],且x1<x2
则f(x1)-f(x2)=x1²-x2²-2(x1-x2)
=(x1+x2-2) (x1-x2)
此时x1+x2-2>0,x1-x2<0,所以f(x1)-f(x2)<0
证明结束
(2)f(x)=(x-a)²+1
所以a<0的时候,f(x)单调增加,最小值为f(0)=a²+1
0≤a≤2的时候,f(x)先单调递减再单调增加,最小值为f(a)=1
a>2的时候,f(x)单调减少,最小值为f(2)=a²-4a+5
展开全部
题目有误,少了平方项吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你就设 X2大于X1大于 大于1小于2
带入函数 相减 求得X2的函数减去X1的函数大于零
则函数是增函数
第二问 求导 讨论a 很简单自己试下 太麻烦了就不写了
带入函数 相减 求得X2的函数减去X1的函数大于零
则函数是增函数
第二问 求导 讨论a 很简单自己试下 太麻烦了就不写了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一次函数还是二次函数啊?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询