f(x)=4x^3+ax+2,曲线y=f(x),在点p(0,2)处切线的斜率为-12,求a的值;求函数f(x)在区间【-3,2】的最大
展开全部
求导 f'(x)=12x^2+a
f'(0)=a=-12 所以 a=-12
函数为 f(x)=4x^3-12x+2
根据导数 f'(x)=12(x-1)(x+1)
可得函数在(-无穷,-1]是单调递增的
[-1,1]是单调递减的
[1,+无穷)是单调递增的
所以 f(-1)=-4+12=2=10
f(1)=4-12+2=-6
f(-3)=-70
f(2)=10
所以 最大值是 10 当x=2,-1时
f'(0)=a=-12 所以 a=-12
函数为 f(x)=4x^3-12x+2
根据导数 f'(x)=12(x-1)(x+1)
可得函数在(-无穷,-1]是单调递增的
[-1,1]是单调递减的
[1,+无穷)是单调递增的
所以 f(-1)=-4+12=2=10
f(1)=4-12+2=-6
f(-3)=-70
f(2)=10
所以 最大值是 10 当x=2,-1时
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询