如图 Rt△ABC中,∠A=90°,以AB为直径的⊙O交BC于D,E为AC边中点.求证:DE是⊙O的切线
如图Rt△ABC中,∠A=90°,以AB为直径的⊙O交BC于D,E为AC边中点.求证:DE是⊙O的切线...
如图 Rt△ABC中,∠A=90°,以AB为直径的⊙O交BC于D,E为AC边中点.求证:DE是⊙O的切线
展开
2个回答
展开全部
证明:
连AD,交OP于点Q
(1)∵以AB为直径的圆O交BC于点D
∴∠ADB=90º,即AD⊥BC
∵AB=AC,∠A=30°
∴∠ABC=∠ACB=75°;AD是等腰三角形底边上的高,AD也是BC的中线,即BD=CD
(2)∵以AB为直径的圆O交消返宴BC于点D,交AC于点E
∴∠ABC+∠AED=180º,∠CED+∠AED=180º
∴∠ABC=∠CED
∴∠CDE=180º-∠CED-∠ACB=180º-75º-75º=30º
∵BP∥DE
∴∠CBP=∠CDE=30º
∴∠OBP=∠ABC-∠CBP=75º-30º=45º
∵OB=OP
∴∠OPB=45º
∴∠BOP=180º-∠OBP-∠OPB=180º-45º-45º=90º
(3)∵AD是等腰三角形底边上的高,AD也是角平分线,即∠BAD=∠CAD
∵∠A=30°,∠BOP=90º
∴∠PAQ=30º=∠CBP ①
∵∠BOP=90º,OA=OB
∴PA=PA ②拿银
∵AQ=OA/cos∠A/2=AB/(2cos15º),BC=2BD=2ABsin∠A/2=2ABsin15º
∵2sin15º*2cos15º=2sin30º=1即2sin15º=1/(2cos15º世拦)
∴AQ=BC ③
∴由①②③得△PAQ≌△PBC
∴∠BPC=∠APQ=45º
∴∠OPC=∠OPB+∠BPC=45º+45º=90º
∴CP是圆O的切线
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询