函数f;N+→R满足f(1)=1且对任意正整数n都有f(1)+2f(2)+...+nf(n)=n^2f(n)
函数f;N+→R满足f(1)=1且对任意正整数n都有f(1)+2f(2)+...+nf(n)=n^2f(n),求f(2014)...
函数f;N+→R满足f(1)=1且对任意正整数n都有f(1)+2f(2)+...+nf(n)=n^2f(n),求f(2014)
展开
2个回答
展开全部
n≥2时,
f(1)+2f(2)+...+nf(n)=n²·f(n) (1)
f(1)+2f(2)+...+(n-1)f(n-1)=(n-1)²·f(n-1) (2)
(1)-(2)
nf(n)=n²·f(n)-(n-1)²·f(n-1)
n(n-1)·f(n)=(n-1)²·f(n-1)
n≥2,n-1>0,等式两边同除以n-1
n·f(n)=(n-1)·f(n-1)
f(1)=1
1×f(1)=1×1=1,数列{n·f(n)}是各项均为1的常数数列。
n·f(n)=1
f(n)=1/n
f(2014)=1/2014
提示:本解法可以求任意项的值。
f(1)+2f(2)+...+nf(n)=n²·f(n) (1)
f(1)+2f(2)+...+(n-1)f(n-1)=(n-1)²·f(n-1) (2)
(1)-(2)
nf(n)=n²·f(n)-(n-1)²·f(n-1)
n(n-1)·f(n)=(n-1)²·f(n-1)
n≥2,n-1>0,等式两边同除以n-1
n·f(n)=(n-1)·f(n-1)
f(1)=1
1×f(1)=1×1=1,数列{n·f(n)}是各项均为1的常数数列。
n·f(n)=1
f(n)=1/n
f(2014)=1/2014
提示:本解法可以求任意项的值。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询