多元函数微分的题目
展开全部
设D为一个非空的n 元有序数组的集合, f为某一确定的对应规则。若对于每一个有序数组(x1,x2,…,xn)∈D,通过对应规则f,都有唯一确定的实数y与之对应锋消绝,则称对应规则银姿f为定义在D上的n元函数。记为y=f(x1,x2,…,xn) ,(x1,x2,…,xn)∈D 。 变量x1,x2,…,xn称为自变量;y称为因变量。(xi,其中i是下标。下同)当n=1时,为一元函数,记为y=f(x),x∈D;当n=2时,为二元函数,桥袭记为z=f(x,y),(x,y)∈D.图象如图。二元及以上的函数统称为多元函数。
定义:
多元函数定义
设D为一个非空的n 元有序数组的集合, f为某一确定的对应规则。
若对于每一个有序数组(x1,x2,…,xn)∈D,通过对应规则f,都有唯一确定的实数y与之对应,则称对应规则f为定义在D上的n元函数。记为y=f(x1,x2,…,xn) ,(x1,x2,…,xn)∈D 。 变量x1,x2,…,xn称为自变量;y称为因变量。(xi,其中i是下标。下同)
多元函数——二元函数z=f(x,y)的图象
当n=1时,为一元函数,记为y=f(x),x∈D;
当n=2时,为二元函数,记为z=f(x,y),(x,y)∈D.图象如图。
二元及以上的函数统称为多元函数。
定义:
多元函数定义
设D为一个非空的n 元有序数组的集合, f为某一确定的对应规则。
若对于每一个有序数组(x1,x2,…,xn)∈D,通过对应规则f,都有唯一确定的实数y与之对应,则称对应规则f为定义在D上的n元函数。记为y=f(x1,x2,…,xn) ,(x1,x2,…,xn)∈D 。 变量x1,x2,…,xn称为自变量;y称为因变量。(xi,其中i是下标。下同)
多元函数——二元函数z=f(x,y)的图象
当n=1时,为一元函数,记为y=f(x),x∈D;
当n=2时,为二元函数,记为z=f(x,y),(x,y)∈D.图象如图。
二元及以上的函数统称为多元函数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询