谁可以给我讲讲九年级数学的用一元二次方程解应用题。
展开全部
读题!读题!很重要。
还有就是不要偷懒,要多做题。
做的题多了,到时候等量关系自然就出来了,也不用你辛辛苦苦的找了。
还有,多问老师!不要不好意思。
下面简单的给你介绍一下:
一、知识概述
1、列一元二次方程解应用题的特点
列一元二次方程解应用题与列一元一次方程解应用题的基本方法相同.
从列方程解应用题的方法来讲,列出一元二次方程解应用题与列出一元一次方程解应用题是非常相似的,由于一元一次方程未知数是一次,因此这类问题大部分都可通过算术方法来解决.如果未知数出现二次,用算术方法就很困难了,正由于未知数是二次的,所以可以用一元二次方程解决有关面积问题,经过两次增长的平均增长率问题,数学问题中涉及积的一些问题,经营决策问题等等.
2、列一元二次方程解应用题的一般步骤
和列一元一次方程解应用题一样,列一元二次方程解应用题的一般步骤是:“审、设、列、解、答”.
(1)“审”指读懂题目、审清题意,明确已知和未知,以及它们之间的数量关系.这一步是解决问题的基础;
(2)“设”是指设元,设元分直接设元和间接设元,所谓直接设元就是问什么设什么,间接设元虽然所设未知数不是我们所要求的,但由于对列方程有利,因此间接设元也十分重要.恰当灵活设元直接影响着列方程与解方程的难易;
(3)“列”是列方程,这是非常重要的步骤,列方程就是找出题目中的等量关系,再根据这个相等关系列出含有未知数的等式,即方程.找出相等关系列方程是解决问题的关键;
(4)“解”就是求出所列方程的解;
(5)“答”就是书写答案,应注意的是一元二次方程的解,有可能不符合题意,如线段的长度不能为负数,降低率不能大于100%等等.因此,解出方程的根后,一定要进行检验.
3、数与数字的关系
两位数=(十位数字)×10+个位数字
三位数=(百位数字)×100+(十位数字)×10+个位数字
4、翻一番
翻一番即表示为原量的2倍,翻两番即表示为原量的4倍.
5、增长率问题
(1)增长率问题的有关公式:
增长数=基数×增长率,实际数=基数+增长数
(2)两次增长,且增长率相等的问题的基本等量关系式为:
原来的×(1+增长率)增长期数=后来的
(1)上述相等关系仅适用增长率相同的情形;
(2)如果是下降率,则上述关系式为:
原来的×(1-增长率)下降期数=后来的
6、利用一元二次方程解几何图形中的有关计算问题的一般步骤
(1)整体地、系统地审读题意;
(2)寻求问题中的等量关系(依据几何图形的性质);
(3)设未知数,并依据等量关系列出方程;
(4)正确地求解方程并检验解的合理性;
(5)写出答案.
7、列方程解应用题的关键
(1)审题是设未知数、列方程的基础,所谓审题,就是要善于理解题意,弄清题中的已知量和未知数,分清它们之间的数量关系,寻求隐含的相等关系;
(2)设未知数分直接设未知数和间接设未知数,这就需根据题目中的数量关系正确选择设未知数的方法和正确地设出未知数.
列方程解应用题应注意:
(1)要充分利用题设中的已知条件,善于分析题中隐含的条件,挖掘其隐含关系;
(2)由于一元二次方程通常有两个根,为此要根据题意对两根加以检验.即判断或确定方程的根与实际背景和题意是否相符,并将不符合题意和实际意义的根舍去.
二、重难点知识归纳
审清题意,找等量关系,合理设未知数列一元二次方程解应用题.
三、典型例题剖析
例1、一个两位数,个位数字与十位数字之和为5,把个位数字与十位数字对调后,所得的两位数与原来的两位数的乘积为736,求原来的两位数.
[解析]思路:数与数字之间的关系是:两位数=(十位数字)×10+(个位数字)
解题的关键是正确地写出原来的两位数与对调后的两位数,为了便于分析,可列出下表:
十位数字
个位数字
两位数
原来的
x
5-x
10x+(5-x)
对调后的
5-x
x
10(5-x)+x
解:设原两位数的十位数字为x,则个位数字为(5-x),根据题意得
[10x+(5-x)][10(5-x)+x]=736
整理得x2-5x+6=0
解这个方程得x1=2,x2=3
当x=2时,5-x=3,两位数为23;
当x=3时,5-x=2,两位数为32.
总结:(1)对于多位数问题要善于用各数位上的数字来表示该多位数;
(2)求出方程的解之后,要善于检验它们是否符合题意,不要漏解,更不能保留不合题意的解.
例2、在一次象棋比赛中,实行单循环赛制(即每个选手都与其他选手比赛一局),每局赢者记2分,负者记0分,如果平局,两个选手各记1分,今有4个同学统计了比赛中全部选手的得分总和,结果分别为2005、2004、2070、2008,经核实确定只有一位同学统计无误,试计算这次比赛中共有多少名选手参赛.
[解析]
思路:(1)先分析比赛的总局数,假设此次比赛共有x名选手参赛,则共比赛局;
(2)再分析得分总和的特征,由于无论胜、负、平每一局比赛都记2分,则比赛局的得分总和就是全部参赛选手的得分总和.即x(x-1)分,又x必为正整数,因此x与x-1是两个连续自然数的积,必为偶数,因此2005分属统计错误,其次两个自然数的积的个位数只可能是0,2,6.因此得分总和不可能是2004,2008,由条件知得分总和只可能是2070.
解:设共有x(x为正整数)名选手参赛,所以共计有局比赛.因为每局比赛共记2分,所以全部选手的得分总和为x(x-1)分,由于相邻两个自然数之积是偶数,且其个位数字只能是0,2,6,故总得分不能为2005,2004,2008,所以可得方程x(x-1)=2070.
解这个方程得x1=46,x2=-45(不合题意舍去)
答:这次比赛共有46名选手参赛.
总结:(1)分析所有参赛选手的得分总和是解本题的关键;
(2)正确选取合适的数据是解决本题的难点,这就需要多了解整数的基本特征.
例3、某商厦今年一月份销售额为60万元,二月份由于经营不善,销售额下降了10%,以后改进管理,大大激发了全体员工的积极性,月销售额大幅度上升,到四月份销售额猛增到96万元,求三、四月份平均每月增长的百分率是多少?(精确到0.1%)
[解析]
思路:这是一个增长率问题,先求出二月份的销售额,再设三、四月份平均增长率为x,表示四月份的销售额.
解:设三、四月份平均每月增长率为x,依题意得
60(1-10%)(1+x)2=96.
解得.x1=1/3,x2=-7/3(舍)
由于增长的百分率不能为负数,故不合题意,舍去.
即.x=1/3=33.3%
答:商厦三、四月份平均每月销售额增长率为33.3%.
总结:增长率的基本公式为:a(1±x)n,其中a为基数,x为增长率或降低率,n表示经过几个月的月数.
例4、截至目前,我国退耕还林工程试点扩大到20个省、市、区,具体情况如下表:(单位:万公顷)
基本情况
造林绿化面积
退耕还林面积
宜林荒山荒地造林面积
2002年完成
88.50
38.89
48.61
2003年新增
227
266
(1)将上表补充完整;
(2)若2005年新增造林绿化面积比2003年新增造林绿化面积翻两番,2004、2005两年的平均增长率相同,求这个增长率.
[解析]思路:由表可知:造林绿化面积=退耕还林面积+宜林荒山荒地造林面积.2005年新增造林绿化面积比2003年新增造林绿化面积翻两番即为4倍,可列方程求解.
解:(1)表中数据为493;
(2)设这个增长率为x,依题意有
493(1+x)2=493×4
解这个方程,得x1=1,x2=-3(不合题意舍去).
∴x=1=100%.
答:这个增长率为100%.
总结:正确理解翻两番的含义是解题的关键,应在日常生活中多接触类似术语,理解其含义.
例5、取一块长80cm、宽60cm的矩形白铁皮,在它的四个角上截四个大小相同的正方形后,把四边折起来,做成一个没有盖子的长方体盒子,如果做成底面积为1500cm2的长方体盒子,截下的小正方形的边长是多少厘米?
[解析]思路:设截下的小正方形的边长为x cm,则折成的没有盖子的长方体盒子的底面的长为(80-2x)cm,宽为(60-2x)cm,则可得方程.
解:设截下的小正方形的边长为x cm,依题意得
(80-2x)(60-2x)=1500
整理得x2-70x+825=0
解得x1=15,x2=55
但当x=55时,80-2x=-30,不合题意,舍去.
∴x=15.
答:截下的小正方形的边长为15cm.
总结:(1)解决有关面积问题时,要注意将不规则图形分割成或组合成规则图形,找出各部分面积之间的关系,再利用规则图形的面积公式列出方程;
(2)利用一元二次方程解决实际问题时要对解进行检验,有时一元二次方程的解不一定符合题意
例6、如图,已知A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P,Q分别从点A,C同时出发,点P以3cm/s的速度向点B移动,一直到点B为止,点Q以2cm/s的速度向D移动.
问:(1)P,Q两点从出发开始几秒时,四边形PBCQ的面积是33cm2?
(2)P,Q两点从出发开始到几秒时,点P点Q间的距离是10cm?
[解析] 思路:(1)由于四边形PBCQ为梯形,且高CB=6cm,于是只需表示出上、下底边长即可列出方程;
(2)由于PQ两点间的距离,不易用未知数的代数式表示,需通过作辅助线构造基本几何图形——直角三角形,利用勾股定理列方程求解.
解:(1)设P,Q两点从出发开始x秒时,四边形PBCQ的面积是33cm2,则AP=3x,PB=16-3x,CQ=2x.由梯形的面积公式得,解得x=5.
答:P,Q两点从出发开始5秒时,四边形PBCQ的面积为33cm2;
(2)设P,Q两点从出发开始到y秒时,点P,点Q间的距离为10cm.
如图,过点Q作QH⊥AB,交AB于H,则AP=3y,CQ=2y,PH=16-3y-2y,根据勾股定理,得(16-3y-2y)2=102-62,化简方程得25y2-160y+192=0,解得.y1=8/5,y2=24/5
答:P,Q两点从出发开始到8/5秒或24/5秒时,点P点Q的距离是10cm.
例7、某商场销售一种名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?
[解析] 思路:每降价1元,则每件盈利(40-1)元,每天可售出(20+2)件.故若设每件衬衫应降价x元,则每件盈利(40-x)元,每天售出(20+2x)件,再根据总盈利=每件的盈利×售出的件数.可列出方程求解.
解:设每件应降价x元,则每件盈利(40-x)元,每天可售出(20+2x)件,根据题意可列方程
(40-x)(20+2x)=1200
整理得x2-30x+200=0
解得x1=10,x2=20
因为要尽量减少库存,在获利相同的情况下,降价越多,销售越快,故每件应降价20元.
答:每件衬衫应降价20元.
总结:尽量减少库存是本题方程的根必须适合的题意.两根比较不难得出适合题意的一个,但“尽快减少库存”这一要求在审题中很容易被漏掉,从而导致错误,请注意,另外本题中每件衬衫降价x元.即是每件盈利减少x元.因此在解应用题应认真审清题意,是正确解题的关键.
例8、汽车在行驶过程中由于惯性作用,刹车后还要向前滑行一段距离才能停住.我们称这段距离为刹车距离,在一个限速为35km/h以内的弯道上,甲、乙两车相向而行,发现情况不对,同时刹车,但还是相撞了,事后现场测得甲车的刹车距离为12m,乙车的刹车距离为10m,已知甲车的刹车距离S甲(m)与车速x(km/h)之间的关系是:S甲=0.1x+0.01x2,乙车的刹车距离S乙(m)与车速x(km/h)之间的关系是:S乙=0.05x+0.005x2,请你从两车速度方面分析事故原因.
[解析] 思路:要求从两车速度方面分析事故原因,就必须从已知的两车的刹车距离计算出在经过这段弯道上时的速度是否超过警示速度,从而断定事故的主要责任者,而已知条件中两车的刹车距离分别为12m和10m,以及两个关系式,通过解方程求出车速,并作出判断.
解:∵甲车的刹车距离为12m,∴0.01x2+0.1x=12
即x2+10x-1200=0
解得x1=30,x2=-40
由于速度不能为负数,∴x2=-40不合题意,舍去.
所以甲车的速度为30km/h,不超过限速.
对于乙车则有0.05x+0.005x2=10
解这个方程得x1=40,x2=-50(不合题意,舍去).
所以乙车的速度为40km/h超过了限速35km/h的规定.
还有就是不要偷懒,要多做题。
做的题多了,到时候等量关系自然就出来了,也不用你辛辛苦苦的找了。
还有,多问老师!不要不好意思。
下面简单的给你介绍一下:
一、知识概述
1、列一元二次方程解应用题的特点
列一元二次方程解应用题与列一元一次方程解应用题的基本方法相同.
从列方程解应用题的方法来讲,列出一元二次方程解应用题与列出一元一次方程解应用题是非常相似的,由于一元一次方程未知数是一次,因此这类问题大部分都可通过算术方法来解决.如果未知数出现二次,用算术方法就很困难了,正由于未知数是二次的,所以可以用一元二次方程解决有关面积问题,经过两次增长的平均增长率问题,数学问题中涉及积的一些问题,经营决策问题等等.
2、列一元二次方程解应用题的一般步骤
和列一元一次方程解应用题一样,列一元二次方程解应用题的一般步骤是:“审、设、列、解、答”.
(1)“审”指读懂题目、审清题意,明确已知和未知,以及它们之间的数量关系.这一步是解决问题的基础;
(2)“设”是指设元,设元分直接设元和间接设元,所谓直接设元就是问什么设什么,间接设元虽然所设未知数不是我们所要求的,但由于对列方程有利,因此间接设元也十分重要.恰当灵活设元直接影响着列方程与解方程的难易;
(3)“列”是列方程,这是非常重要的步骤,列方程就是找出题目中的等量关系,再根据这个相等关系列出含有未知数的等式,即方程.找出相等关系列方程是解决问题的关键;
(4)“解”就是求出所列方程的解;
(5)“答”就是书写答案,应注意的是一元二次方程的解,有可能不符合题意,如线段的长度不能为负数,降低率不能大于100%等等.因此,解出方程的根后,一定要进行检验.
3、数与数字的关系
两位数=(十位数字)×10+个位数字
三位数=(百位数字)×100+(十位数字)×10+个位数字
4、翻一番
翻一番即表示为原量的2倍,翻两番即表示为原量的4倍.
5、增长率问题
(1)增长率问题的有关公式:
增长数=基数×增长率,实际数=基数+增长数
(2)两次增长,且增长率相等的问题的基本等量关系式为:
原来的×(1+增长率)增长期数=后来的
(1)上述相等关系仅适用增长率相同的情形;
(2)如果是下降率,则上述关系式为:
原来的×(1-增长率)下降期数=后来的
6、利用一元二次方程解几何图形中的有关计算问题的一般步骤
(1)整体地、系统地审读题意;
(2)寻求问题中的等量关系(依据几何图形的性质);
(3)设未知数,并依据等量关系列出方程;
(4)正确地求解方程并检验解的合理性;
(5)写出答案.
7、列方程解应用题的关键
(1)审题是设未知数、列方程的基础,所谓审题,就是要善于理解题意,弄清题中的已知量和未知数,分清它们之间的数量关系,寻求隐含的相等关系;
(2)设未知数分直接设未知数和间接设未知数,这就需根据题目中的数量关系正确选择设未知数的方法和正确地设出未知数.
列方程解应用题应注意:
(1)要充分利用题设中的已知条件,善于分析题中隐含的条件,挖掘其隐含关系;
(2)由于一元二次方程通常有两个根,为此要根据题意对两根加以检验.即判断或确定方程的根与实际背景和题意是否相符,并将不符合题意和实际意义的根舍去.
二、重难点知识归纳
审清题意,找等量关系,合理设未知数列一元二次方程解应用题.
三、典型例题剖析
例1、一个两位数,个位数字与十位数字之和为5,把个位数字与十位数字对调后,所得的两位数与原来的两位数的乘积为736,求原来的两位数.
[解析]思路:数与数字之间的关系是:两位数=(十位数字)×10+(个位数字)
解题的关键是正确地写出原来的两位数与对调后的两位数,为了便于分析,可列出下表:
十位数字
个位数字
两位数
原来的
x
5-x
10x+(5-x)
对调后的
5-x
x
10(5-x)+x
解:设原两位数的十位数字为x,则个位数字为(5-x),根据题意得
[10x+(5-x)][10(5-x)+x]=736
整理得x2-5x+6=0
解这个方程得x1=2,x2=3
当x=2时,5-x=3,两位数为23;
当x=3时,5-x=2,两位数为32.
总结:(1)对于多位数问题要善于用各数位上的数字来表示该多位数;
(2)求出方程的解之后,要善于检验它们是否符合题意,不要漏解,更不能保留不合题意的解.
例2、在一次象棋比赛中,实行单循环赛制(即每个选手都与其他选手比赛一局),每局赢者记2分,负者记0分,如果平局,两个选手各记1分,今有4个同学统计了比赛中全部选手的得分总和,结果分别为2005、2004、2070、2008,经核实确定只有一位同学统计无误,试计算这次比赛中共有多少名选手参赛.
[解析]
思路:(1)先分析比赛的总局数,假设此次比赛共有x名选手参赛,则共比赛局;
(2)再分析得分总和的特征,由于无论胜、负、平每一局比赛都记2分,则比赛局的得分总和就是全部参赛选手的得分总和.即x(x-1)分,又x必为正整数,因此x与x-1是两个连续自然数的积,必为偶数,因此2005分属统计错误,其次两个自然数的积的个位数只可能是0,2,6.因此得分总和不可能是2004,2008,由条件知得分总和只可能是2070.
解:设共有x(x为正整数)名选手参赛,所以共计有局比赛.因为每局比赛共记2分,所以全部选手的得分总和为x(x-1)分,由于相邻两个自然数之积是偶数,且其个位数字只能是0,2,6,故总得分不能为2005,2004,2008,所以可得方程x(x-1)=2070.
解这个方程得x1=46,x2=-45(不合题意舍去)
答:这次比赛共有46名选手参赛.
总结:(1)分析所有参赛选手的得分总和是解本题的关键;
(2)正确选取合适的数据是解决本题的难点,这就需要多了解整数的基本特征.
例3、某商厦今年一月份销售额为60万元,二月份由于经营不善,销售额下降了10%,以后改进管理,大大激发了全体员工的积极性,月销售额大幅度上升,到四月份销售额猛增到96万元,求三、四月份平均每月增长的百分率是多少?(精确到0.1%)
[解析]
思路:这是一个增长率问题,先求出二月份的销售额,再设三、四月份平均增长率为x,表示四月份的销售额.
解:设三、四月份平均每月增长率为x,依题意得
60(1-10%)(1+x)2=96.
解得.x1=1/3,x2=-7/3(舍)
由于增长的百分率不能为负数,故不合题意,舍去.
即.x=1/3=33.3%
答:商厦三、四月份平均每月销售额增长率为33.3%.
总结:增长率的基本公式为:a(1±x)n,其中a为基数,x为增长率或降低率,n表示经过几个月的月数.
例4、截至目前,我国退耕还林工程试点扩大到20个省、市、区,具体情况如下表:(单位:万公顷)
基本情况
造林绿化面积
退耕还林面积
宜林荒山荒地造林面积
2002年完成
88.50
38.89
48.61
2003年新增
227
266
(1)将上表补充完整;
(2)若2005年新增造林绿化面积比2003年新增造林绿化面积翻两番,2004、2005两年的平均增长率相同,求这个增长率.
[解析]思路:由表可知:造林绿化面积=退耕还林面积+宜林荒山荒地造林面积.2005年新增造林绿化面积比2003年新增造林绿化面积翻两番即为4倍,可列方程求解.
解:(1)表中数据为493;
(2)设这个增长率为x,依题意有
493(1+x)2=493×4
解这个方程,得x1=1,x2=-3(不合题意舍去).
∴x=1=100%.
答:这个增长率为100%.
总结:正确理解翻两番的含义是解题的关键,应在日常生活中多接触类似术语,理解其含义.
例5、取一块长80cm、宽60cm的矩形白铁皮,在它的四个角上截四个大小相同的正方形后,把四边折起来,做成一个没有盖子的长方体盒子,如果做成底面积为1500cm2的长方体盒子,截下的小正方形的边长是多少厘米?
[解析]思路:设截下的小正方形的边长为x cm,则折成的没有盖子的长方体盒子的底面的长为(80-2x)cm,宽为(60-2x)cm,则可得方程.
解:设截下的小正方形的边长为x cm,依题意得
(80-2x)(60-2x)=1500
整理得x2-70x+825=0
解得x1=15,x2=55
但当x=55时,80-2x=-30,不合题意,舍去.
∴x=15.
答:截下的小正方形的边长为15cm.
总结:(1)解决有关面积问题时,要注意将不规则图形分割成或组合成规则图形,找出各部分面积之间的关系,再利用规则图形的面积公式列出方程;
(2)利用一元二次方程解决实际问题时要对解进行检验,有时一元二次方程的解不一定符合题意
例6、如图,已知A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P,Q分别从点A,C同时出发,点P以3cm/s的速度向点B移动,一直到点B为止,点Q以2cm/s的速度向D移动.
问:(1)P,Q两点从出发开始几秒时,四边形PBCQ的面积是33cm2?
(2)P,Q两点从出发开始到几秒时,点P点Q间的距离是10cm?
[解析] 思路:(1)由于四边形PBCQ为梯形,且高CB=6cm,于是只需表示出上、下底边长即可列出方程;
(2)由于PQ两点间的距离,不易用未知数的代数式表示,需通过作辅助线构造基本几何图形——直角三角形,利用勾股定理列方程求解.
解:(1)设P,Q两点从出发开始x秒时,四边形PBCQ的面积是33cm2,则AP=3x,PB=16-3x,CQ=2x.由梯形的面积公式得,解得x=5.
答:P,Q两点从出发开始5秒时,四边形PBCQ的面积为33cm2;
(2)设P,Q两点从出发开始到y秒时,点P,点Q间的距离为10cm.
如图,过点Q作QH⊥AB,交AB于H,则AP=3y,CQ=2y,PH=16-3y-2y,根据勾股定理,得(16-3y-2y)2=102-62,化简方程得25y2-160y+192=0,解得.y1=8/5,y2=24/5
答:P,Q两点从出发开始到8/5秒或24/5秒时,点P点Q的距离是10cm.
例7、某商场销售一种名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?
[解析] 思路:每降价1元,则每件盈利(40-1)元,每天可售出(20+2)件.故若设每件衬衫应降价x元,则每件盈利(40-x)元,每天售出(20+2x)件,再根据总盈利=每件的盈利×售出的件数.可列出方程求解.
解:设每件应降价x元,则每件盈利(40-x)元,每天可售出(20+2x)件,根据题意可列方程
(40-x)(20+2x)=1200
整理得x2-30x+200=0
解得x1=10,x2=20
因为要尽量减少库存,在获利相同的情况下,降价越多,销售越快,故每件应降价20元.
答:每件衬衫应降价20元.
总结:尽量减少库存是本题方程的根必须适合的题意.两根比较不难得出适合题意的一个,但“尽快减少库存”这一要求在审题中很容易被漏掉,从而导致错误,请注意,另外本题中每件衬衫降价x元.即是每件盈利减少x元.因此在解应用题应认真审清题意,是正确解题的关键.
例8、汽车在行驶过程中由于惯性作用,刹车后还要向前滑行一段距离才能停住.我们称这段距离为刹车距离,在一个限速为35km/h以内的弯道上,甲、乙两车相向而行,发现情况不对,同时刹车,但还是相撞了,事后现场测得甲车的刹车距离为12m,乙车的刹车距离为10m,已知甲车的刹车距离S甲(m)与车速x(km/h)之间的关系是:S甲=0.1x+0.01x2,乙车的刹车距离S乙(m)与车速x(km/h)之间的关系是:S乙=0.05x+0.005x2,请你从两车速度方面分析事故原因.
[解析] 思路:要求从两车速度方面分析事故原因,就必须从已知的两车的刹车距离计算出在经过这段弯道上时的速度是否超过警示速度,从而断定事故的主要责任者,而已知条件中两车的刹车距离分别为12m和10m,以及两个关系式,通过解方程求出车速,并作出判断.
解:∵甲车的刹车距离为12m,∴0.01x2+0.1x=12
即x2+10x-1200=0
解得x1=30,x2=-40
由于速度不能为负数,∴x2=-40不合题意,舍去.
所以甲车的速度为30km/h,不超过限速.
对于乙车则有0.05x+0.005x2=10
解这个方程得x1=40,x2=-50(不合题意,舍去).
所以乙车的速度为40km/h超过了限速35km/h的规定.
展开全部
一元二次方程是九上数学中 较为重要的一部分。
你要了解并收敛掌握。
如一道简单的题目
1²+X²=5可得X²=5-1²=4
①X=2 ②X=-2
一元二次方程主要是和函数联系在一起
Y=2X²+16X+4
他是由一个一元二次方程转成一个函数
Y=2(X²+8X+4²-4²)+4
=2(X+4)²+4
则该函数的顶点坐标为(-4,4)
对称轴为X=-4
你要了解并收敛掌握。
如一道简单的题目
1²+X²=5可得X²=5-1²=4
①X=2 ②X=-2
一元二次方程主要是和函数联系在一起
Y=2X²+16X+4
他是由一个一元二次方程转成一个函数
Y=2(X²+8X+4²-4²)+4
=2(X+4)²+4
则该函数的顶点坐标为(-4,4)
对称轴为X=-4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
够全面了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询