解答:
联立解 y=x,xy=1,得第一象限交点 (1,1),则
∫∫ x^2/y^2dxdy = ∫(1/y^2)dy∫ x^2dx
= ∫ 1/y^2dy[x^3/3]∫
= (1/3)∫ (y-1/y^5)dy
= (1/3)[y^2/2+1/(4y^4)] = 27/64
意义
当被积函数大于零时,二重积分是柱体的体积。
当被积函数小于零时,二重积分是柱体体积负值。
在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。