证明f(x)=2x-1/x+1在【1,正无穷)上是减函数

 我来答
机器1718
2022-09-04 · TA获得超过6804个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:158万
展开全部
f(x)=(2x-1)/(x+1)=[2(x+1)-3]/(x+1)=2-3/(x+1)
设x1>x2>=1
f(x1)-f(x2)=-3/(x1+1)+3/(x2+1)=3[(x1+1)-(x2+1)]/(x1+1)(x2+1)=3(x1-x2)/(x1+1)(x2+1)
由于x1-x2>0,x1+1>0,x2+1>0
所以,f(x1)-f(x2)>0
所以,函数在[1,+无穷)上是增函数.
你的题目打错了吧.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式