若函数f(x)=ax2+bx+3a+b是偶函数,且其定义域为[a-1,2a],则以(a,b)为圆心,3为半径的圆的标准方程

若函数f(x)=ax2+bx+3a+b是偶函数,且其定义域为[a-1,2a],则以(a,b)为圆心,3为半径的圆的标准方程为(x-13)2+y2=9(x-13)2+y2=... 若函数f(x)=ax2+bx+3a+b是偶函数,且其定义域为[a-1,2a],则以(a,b)为圆心,3为半径的圆的标准方程为(x-13)2+y2=9(x-13)2+y2=9. 展开
 我来答
叛逆尊0939
推荐于2016-02-29 · 超过65用户采纳过TA的回答
知道答主
回答量:122
采纳率:0%
帮助的人:136万
展开全部
∵函数f(x)=ax2+bx+3a+b是偶函数,∴f(-x)=f(x),
即ax2-bx+3a+b=ax2+bx+3a+b恒成立,
∴b=0
又∵函数的定义域为[a-1,2a],
∴a-1=-2a,
∴a=
1
3

∴以(a,b)为圆心,3为半径的圆的标准方程为(x-
1
3
2+y2=9.
故答案为:(x-
1
3
2+y2=9.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式