已知,在△ABC中,点D、E分别在边AB、AC上,连接DE并延长交BC的延长线于点F,连接DC、BE.且∠BDE+∠BCE=

已知,在△ABC中,点D、E分别在边AB、AC上,连接DE并延长交BC的延长线于点F,连接DC、BE.且∠BDE+∠BCE=180°,求证:△FDC∽△FBE.... 已知,在△ABC中,点D、E分别在边AB、AC上,连接DE并延长交BC的延长线于点F,连接DC、BE.且∠BDE+∠BCE=180°,求证:△FDC∽△FBE. 展开
 我来答
血刺续殇岔q
2014-12-25 · 超过47用户采纳过TA的回答
知道答主
回答量:115
采纳率:100%
帮助的人:96.8万
展开全部
解答:证明:∵∠BDE+∠BCE=180°,∠ECF+∠BCE=180°,
∴∠BDE=∠ECF,
∵∠F是公共角,
∴△ECF∽△BDF,
∴EF:BF=CF:DF,
即EF:CF=BF:DF,
∵∠F是公共角,
∴△FDC∽△FBE.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式