聚点定理证明有限覆盖定理
试用聚点定理证明有限覆盖定理聚点定理和有限覆盖定理是相互等价的,它们都描述了一个集合一种很好的性质——紧性,又与一致连续性有紧密关联.不用太详细,说清思路就行....
试用聚点定理证明有限覆盖定理
聚点定理和有限覆盖定理是相互等价的,它们都描述了一个集合一种很好的性质——紧性,又与一致连续性有紧密关联.不用太详细,说清思路就行. 展开
聚点定理和有限覆盖定理是相互等价的,它们都描述了一个集合一种很好的性质——紧性,又与一致连续性有紧密关联.不用太详细,说清思路就行. 展开
1个回答
展开全部
证明很长的,要用两个引理.
引理一:证明对于满足聚点的X,(Ui)为一个覆盖,那么存在r>0,使得任意x属于X,都存在i,满足B'(x,r)属于Ui.B'(x,r)是x为中心,r为半径的球.
引理二:对于满足聚点的X,那么对任意r>0,都存在有限点集(xk),满足X等于所有B'(xk,r)的并集.
最后是定理的证明:假设如上的X和(Ui).由引理一,存在如此的r>0.再由引理二,对于这个r,存在如此的(xk).于是X可以被(Uk)所覆盖,因为每个Uk包含B'(xk,r).
两个引理的证明你先想一想,实在做不了再pm我.
第一个对于r=2^(-n),取对应xn,推出矛盾;第二个可以取数列(xn),使得任意两个距离大于r,推出矛盾.
引理一:证明对于满足聚点的X,(Ui)为一个覆盖,那么存在r>0,使得任意x属于X,都存在i,满足B'(x,r)属于Ui.B'(x,r)是x为中心,r为半径的球.
引理二:对于满足聚点的X,那么对任意r>0,都存在有限点集(xk),满足X等于所有B'(xk,r)的并集.
最后是定理的证明:假设如上的X和(Ui).由引理一,存在如此的r>0.再由引理二,对于这个r,存在如此的(xk).于是X可以被(Uk)所覆盖,因为每个Uk包含B'(xk,r).
两个引理的证明你先想一想,实在做不了再pm我.
第一个对于r=2^(-n),取对应xn,推出矛盾;第二个可以取数列(xn),使得任意两个距离大于r,推出矛盾.
蔚蓝精密有限公司
2024-11-20 广告
2024-11-20 广告
深圳市蔚蓝精密有限公司简介: 深圳市蔚蓝精密有限公司是一家专业从事精密塑胶模具、塑胶产品的设计与销售的企业,同时也涉及货物及技术进出口。公司致力于提供高质量的产品和服务,以满足客户的需求。主营产品和服务: 公司的主营产品包括精密塑胶模具和塑...
点击进入详情页
本回答由蔚蓝精密有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询