如图,在△ABC中,AB=AC,AD是∠BAC的平分线,E为AD的延长线上的一点,CF//BE交AD于F,连接BF、CE,试说

如图,在△ABC中,AB=AC,AD是∠BAC的平分线,E为AD的延长线上的一点,CF//BE交AD于F,连接BF、CE,试说明四边形BECF是菱形... 如图,在△ABC中,AB=AC,AD是∠BAC的平分线,E为AD的延长线上的一点,CF//BE交AD于F,连接BF、CE,试说明四边形BECF是菱形 展开
 我来答
ni林S03538
2013-12-21 · TA获得超过152个赞
知道答主
回答量:130
采纳率:0%
帮助的人:114万
展开全部
证明:∵AD是∠BAC的角平分线 ∴∠BAD=∠CAD 又∵AB=AC AD为公共边 ∴△BAD≌△CAD ∴BD=CD 同理可得BF=CF 又∵CF∥BE ∴∠FCD=∠EBD 在△EBD与△FCD中 BD=CD ∠FCD=∠EBD ∠FDC=∠EDB ∴△FDC≌△EDB ∴CF=BE又∵CF平行且等于BE ∴ 四边形BECF为平行四边形又∵BF=CF ∴平行四边形BECF为菱形
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式