大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+n=?经过研究,这个问题的结论是1+2+3+…+n

大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+n=?经过研究,这个问题的结论是1+2+3+…+n=12n(n+1),其中n是正整数.现在我们来研究一个类... 大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+n=?经过研究,这个问题的结论是1+2+3+…+n=12n(n+1),其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…+n(n+1)=?观察下面三个特殊的等式:1×2=13(1×2×3?0×1×2),2×3=13(2×3×4?1×2×3),3×4=13(3×4×5?2×3×4),将这三个等式的两边相加,可以得到1×2+2×3+3×4=13×3×4×5=20.根据上述规律,请你计算:1×2+2×3+…+n(n+1)=______;1×2×3+2×3×4+…+n(n+1)(n+2)=______. 展开
 我来答
爱晓天s4
2015-01-03 · 超过67用户采纳过TA的回答
知道答主
回答量:173
采纳率:0%
帮助的人:147万
展开全部
根据阅读散桥材料中的例子得:1×2+2×3+…+n(n+1)
=
1
3
(1×2×3-0×1×2)+
1
3
(2×3×4-1×2×3)+…+
1
3
[n(n+1)(n+2)-(n-1)n(昌燃n+1)]
=
1
3
n(n+1)(n+2);
依此类推:1×2×3=
1
4
(1×2×3×4-0×1×2×3),2×3×4=
1
4
(2×3×4×5-1×2×3×4)冲迅猛,
∴1×2×3+2×3×4+…+n(n+1)(n+2)
=
1
4
(1×2×3×4-0×1×2×3)+
1
4
(2×3×4×5-1×2×3×4)+…+
1
4
[(n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]=
1
4
n(n+1)(n+2)(n+3).
故答案为:
1
3
n(n+1)(n+2);
1
4
n(n+1)(n+2)(n+3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式