急!高二双曲线

F1、F2是双曲线的左、右焦点,P是双曲线上一点,且∠F1PF2=60°,S△PF1F2=12√3,离心率为2,求此双曲线方程... F1、F2是双曲线的左、右焦点,P是双曲线上一点,且∠F1PF2=60°,S△PF1F2=12√3,离心率为2,求此双曲线方程 展开
翻悔
2010-11-30
知道答主
回答量:29
采纳率:0%
帮助的人:19.6万
展开全部
S△F1PF2=1/2*PF1*PF2*sin60=12 (正弦面积公式)
求得PF1*PF2=48
cos60=(PF1的平方+PF2的平方-4*C的平方)/2*PF1*PF2 (余弦定理)
PF1-PF2的绝对值=2a 两边平方 求得PF1的平方+PF2的平方=4*a的平方+96
离心率e=c/a=2 两边平方得c的平方/a的平方=4
联立求得a平方=4 b平方=12
(公式的特殊符号太多,不好表达,抱歉了,以后有问题随时找我哦)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式