设函数f(x)=log2x-logx2(0<x<1),数列{an}满足f(2^an)=2n(n=1,2,……)
4个回答
2010-12-02
展开全部
(1)
f(x)=log2X-logx2=log2X-log2(2)/log2X
=log2X-1/log2X
f(2的an次方)=2n
即log2(2的an次方)-1/log2(2的an次方)=an-1/an=2n
an^2-2n·an-1=0 (1)
此时2的an次方应该满足函数的定义域,即0<2的an次方<1
an<0
根据(1)解得:an=n-√(n^2+1)
(2)an=n-√(n^2+1)=-1/[n+√(n^2+1)] 分子有理化!
a(n+1))=-1/[n+1+√[(n+1)^2+1]>-1/[n+√(n^2+1)]=an
即:a(n+1)>an
{an}为单调递增!
后话:an<0,但不断接近0
f(x)=log2X-logx2=log2X-log2(2)/log2X
=log2X-1/log2X
f(2的an次方)=2n
即log2(2的an次方)-1/log2(2的an次方)=an-1/an=2n
an^2-2n·an-1=0 (1)
此时2的an次方应该满足函数的定义域,即0<2的an次方<1
an<0
根据(1)解得:an=n-√(n^2+1)
(2)an=n-√(n^2+1)=-1/[n+√(n^2+1)] 分子有理化!
a(n+1))=-1/[n+1+√[(n+1)^2+1]>-1/[n+√(n^2+1)]=an
即:a(n+1)>an
{an}为单调递增!
后话:an<0,但不断接近0
展开全部
f(x)=log2x-logx2=log2x-1/log2x
f(2^an)=an-1/an=2n an^2-2n*an-1=0 an=n±根号(n^2+1)
0<x<1 0<2^an<1 an<0 an=n-根号(n^2+1)
an=n-根号(n^2+1) =-(n+根号(n^2+1)),增函数
f(2^an)=an-1/an=2n an^2-2n*an-1=0 an=n±根号(n^2+1)
0<x<1 0<2^an<1 an<0 an=n-根号(n^2+1)
an=n-根号(n^2+1) =-(n+根号(n^2+1)),增函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)
f(2^an) = 2n
f(2^an) = 2n = log2^(an+1)- log2^(2an)
= log2^(1-an)
= (1-an) log 2
an = 1- (2n/log2)
(2)
an = 1-(2n/log2)
{an} is decreasing
f(2^an) = 2n
f(2^an) = 2n = log2^(an+1)- log2^(2an)
= log2^(1-an)
= (1-an) log 2
an = 1- (2n/log2)
(2)
an = 1-(2n/log2)
{an} is decreasing
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(2^an)=log2(2^an)-log2^an(2), 2^an是底数。=an-1/an=2n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询