如图,已知A(-3,0),B(0,-4).点P为双曲线y=kx(x>0,k>0)上的任意一点,过点P作PC⊥x轴于点C,P

如图,已知A(-3,0),B(0,-4).点P为双曲线y=kx(x>0,k>0)上的任意一点,过点P作PC⊥x轴于点C,PO⊥y轴于点D.(1)当四边形ABCD为菱形时,... 如图,已知A(-3,0),B(0,-4).点P为双曲线y=kx(x>0,k>0)上的任意一点,过点P作PC⊥x轴于点C,PO⊥y轴于点D.(1)当四边形ABCD为菱形时,求双曲线的解析式;(2)若点p为直线y=34x与(1)所求的双曲线的交点,试判定此时四边形ABCD的形状,并加以证明. 展开
 我来答
致气耶7233
推荐于2016-02-02 · 超过55用户采纳过TA的回答
知道答主
回答量:116
采纳率:0%
帮助的人:132万
展开全部
(1)解法一:∵四边形ABCD为菱形,
∴OA=OC,OB=OD(1分)
可得点p的坐标为P(3,4)(3分)
∴k=12,即双曲线的解析式为y=
12
x
(x>0,k>0)
(5分)
解法二:
由勾股定理可求得菱形的边长为5,所以求得点C、点D的坐标C(3,0)、D(0,4),
所以点P坐标为P(3,4),下同解(一);

(2)依题意:联立
y=
3
4
x
y=
12
x

解得
x=4
y=3
(x>0),
即P(4,3)(7分)
此时,OA=OD=3、OB=OC=4,△OAD,△OBC为等腰直角三角形,
∴AD∥BC,(9分)
又据勾股定理求得AB=CD=5.
所以四边形ABCD为等腰梯形(10分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式