如图,抛物线y=-x2+2x+3与x轴相交于A,B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写
如图,抛物线y=-x2+2x+3与x轴相交于A,B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A、B、C三点的坐标和抛物线的对称轴.(2)连接BC...
如图,抛物线y=-x2+2x+3与x轴相交于A,B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A、B、C三点的坐标和抛物线的对称轴.(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?②△BCF的面积为S,求S与m的函数关系式,并求出S的最大值.(3)现有一个以原点O为圆心,104长为半径的圆沿y轴正半轴方向向上以每秒1个单位的速度运动,问几秒后⊙O与直线AC相切?
展开
展开全部
(1)设0=-x2+2x+3,
解得:x=-1或3,
∵抛物线y=-x2+2x+3与x相交于AB(点A点B左侧),
∴A(-1,0),B(3,0),
∵抛物线与y轴相交于点C,
∴C(0,3),
∴抛物线的对称轴是:直线x=1.
(2)①设直线BC的函数关系式为y=kx+b,把B(3,0),C(0,3)分别代入,
得
,解得:k=-1,b=3
∴直线BC的函数关系式为y=-x+3.
当x=1时,y=-1+3=2,∴E(1.2).
当x=m时,y=-m+3,∴P(m,-m+3)
在y=-x2+2x+3中,当x=1时,y=4,∴D(1,4).
当x=m时,y=-m2+2m+3,
∴F(m,-m2+2m+3),
∴线段DE=4-2=2,
线段PF=-m2+2m+3-(-m+3)=-m2+3m,
∵PF∥DE
∴当PF=DE时,四边形PEDF为平行四边形.
由-m2+3m=2,解得m=2或m=1(不合题意,舍去).
因此,当m=2时,四边形PEDF为平行四边形.
②设直线PF与x轴交于点M,由B(3,0),O(0,0),可得OB=OM+MB=3.
∵S=S△EPF+S△CPF,
即S=
PF?BM+
PF?OM
=
PF(BM+OM)
=
PF?OB,
∴S=
×3(-m2+3m)=-
m2+
m(0≤m≤3)
∴当m=-
=
时
S最大值=
;
(3)如图,设⊙O与直线AC相切于点E,连O′E,则O′E⊥AC,
∵AO⊥CO,
∴∠O′EC=∠COA=90°
∵∠ACO=∠ECO,
∴△ACO∽△O′CE,
∴
=
,
由(1)得AO=1,CO=3,AC=
,
设x秒后⊙0与AC相切,
则OO′=x,CO′=|3-x|,
∴
=
,
解得:x=0.5或5.5,
∴0.5或5.5秒后⊙O与直线AC相切.
解得:x=-1或3,
∵抛物线y=-x2+2x+3与x相交于AB(点A点B左侧),
∴A(-1,0),B(3,0),
∵抛物线与y轴相交于点C,
∴C(0,3),
∴抛物线的对称轴是:直线x=1.
(2)①设直线BC的函数关系式为y=kx+b,把B(3,0),C(0,3)分别代入,
得
|
∴直线BC的函数关系式为y=-x+3.
当x=1时,y=-1+3=2,∴E(1.2).
当x=m时,y=-m+3,∴P(m,-m+3)
在y=-x2+2x+3中,当x=1时,y=4,∴D(1,4).
当x=m时,y=-m2+2m+3,
∴F(m,-m2+2m+3),
∴线段DE=4-2=2,
线段PF=-m2+2m+3-(-m+3)=-m2+3m,
∵PF∥DE
∴当PF=DE时,四边形PEDF为平行四边形.
由-m2+3m=2,解得m=2或m=1(不合题意,舍去).
因此,当m=2时,四边形PEDF为平行四边形.
②设直线PF与x轴交于点M,由B(3,0),O(0,0),可得OB=OM+MB=3.
∵S=S△EPF+S△CPF,
即S=
1 |
2 |
1 |
2 |
=
1 |
2 |
=
1 |
2 |
∴S=
1 |
2 |
3 |
2 |
9 |
2 |
∴当m=-
| ||
2×(?
|
3 |
2 |
S最大值=
27 |
8 |
(3)如图,设⊙O与直线AC相切于点E,连O′E,则O′E⊥AC,
∵AO⊥CO,
∴∠O′EC=∠COA=90°
∵∠ACO=∠ECO,
∴△ACO∽△O′CE,
∴
AC |
OC |
OA |
OE |
由(1)得AO=1,CO=3,AC=
10 |
设x秒后⊙0与AC相切,
则OO′=x,CO′=|3-x|,
∴
| ||
|3?x| |
1 | ||||
|
解得:x=0.5或5.5,
∴0.5或5.5秒后⊙O与直线AC相切.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询