在三角形ABC中,sinA·sinB=sinC的平方-sinA的平方-sinB的平方,求角C
展开全部
简单
sina/(sinb+sinc)+sinb/(sinc+sina)+sinc/(sina+sinb)
>sina/(sina+sinb+sinc)+sinb/(sinb+sinc+sina)+sinc/(sinc+sina+sinb)=1
下面证
sina<(sinb+sinc)
sin(b+c)=sinbcosc+sinccosb<(sinb+sinc)
即sinb(cosc-1)+sinc(cosb-1)<0
所以sina/(sinb+sinc)<1
下面用一个结论a>0
b>0
a>b
如果t>0
那么(a/b)<(a+t)/(b+t)展开既有
所以sina/(sinb+sinc)+sinb/(sinc+sina)+sinc/(sina+sinb)
<(sina+sina)/(sina+sinb+sinc)+(sinb+sinb)/(sinb+sinc+sina)+(sinc+sinc)/(sinc+sina+sinb)=2得证
sina/(sinb+sinc)+sinb/(sinc+sina)+sinc/(sina+sinb)
>sina/(sina+sinb+sinc)+sinb/(sinb+sinc+sina)+sinc/(sinc+sina+sinb)=1
下面证
sina<(sinb+sinc)
sin(b+c)=sinbcosc+sinccosb<(sinb+sinc)
即sinb(cosc-1)+sinc(cosb-1)<0
所以sina/(sinb+sinc)<1
下面用一个结论a>0
b>0
a>b
如果t>0
那么(a/b)<(a+t)/(b+t)展开既有
所以sina/(sinb+sinc)+sinb/(sinc+sina)+sinc/(sina+sinb)
<(sina+sina)/(sina+sinb+sinc)+(sinb+sinb)/(sinb+sinc+sina)+(sinc+sinc)/(sinc+sina+sinb)=2得证
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询