若实数X,Y,Z满足X2+Y2+Z2=1,则XY+YZ+ZX的取值范围
4个回答
展开全部
(x+y)2+(y+z)2+(z+x)2=x2+y2+z2+2xy+2yz+2zx>=0
所以xy+yz+zx>=-1/2
(x-y)2+(y-z)2+(z-x)2=x2+y2+z2-2xy-2yz-2zx>=0
所以xy+yz+zx<=1/2
所以-1/2<=xy+yz+zx<=1/2
所以xy+yz+zx>=-1/2
(x-y)2+(y-z)2+(z-x)2=x2+y2+z2-2xy-2yz-2zx>=0
所以xy+yz+zx<=1/2
所以-1/2<=xy+yz+zx<=1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
y^2+yz+z^2=a^2,yz≥0
z^2+zx+x^2=b^2,zx≥0
x^2+xy+y^2=c^2,xy≥0
yz+zx+xy=0,x=y=z=0
(a+b+c)(a+b-c)(a-b+c)(a-b-c)=0 y^2+yz+z^2=a^2,yz≥0
z^2+zx+x^2=b^2,zx≥0
x^2+xy+y^2=c^2,xy≥0
yz+zx+xy=0,x=y=z=0
(a+b+c)(a+b-c)(a-b+c)(a-b-c)=0 y^2+yz+z^2=a^2,yz≥0
z^2+zx+x^2=b^2,zx≥0
x^2+xy+y^2=c^2,xy≥0
yz+zx+xy=0,x=y=z=0
(a+b+c)(a+b-c)(a-b+c)(a-b-c)=0 y^2+yz+z^2=a^2,yz≥0
z^2+zx+x^2=b^2,zx≥0
x^2+xy+y^2=c^2,xy≥0
yz+zx+xy=0,x=y=z=0
(a+b+c)(a+b-c)(a-b+c)(a-b-c)=0
z^2+zx+x^2=b^2,zx≥0
x^2+xy+y^2=c^2,xy≥0
yz+zx+xy=0,x=y=z=0
(a+b+c)(a+b-c)(a-b+c)(a-b-c)=0 y^2+yz+z^2=a^2,yz≥0
z^2+zx+x^2=b^2,zx≥0
x^2+xy+y^2=c^2,xy≥0
yz+zx+xy=0,x=y=z=0
(a+b+c)(a+b-c)(a-b+c)(a-b-c)=0 y^2+yz+z^2=a^2,yz≥0
z^2+zx+x^2=b^2,zx≥0
x^2+xy+y^2=c^2,xy≥0
yz+zx+xy=0,x=y=z=0
(a+b+c)(a+b-c)(a-b+c)(a-b-c)=0 y^2+yz+z^2=a^2,yz≥0
z^2+zx+x^2=b^2,zx≥0
x^2+xy+y^2=c^2,xy≥0
yz+zx+xy=0,x=y=z=0
(a+b+c)(a+b-c)(a-b+c)(a-b-c)=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:∵xy+yz+zx≤
x2+y2
2
+
y2+z2
2
+
x2+z2
2
=x2+y2+z2=1,
又∵2(xy+yz+zx)=(x+y+z)2-(x2+y2+z2)≥0-1=-1,
∴xy+yz+zx≥-
1
2
.
故选B.
x2+y2
2
+
y2+z2
2
+
x2+z2
2
=x2+y2+z2=1,
又∵2(xy+yz+zx)=(x+y+z)2-(x2+y2+z2)≥0-1=-1,
∴xy+yz+zx≥-
1
2
.
故选B.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询