如图,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=CD,求证:BD²=AB²+BC²
1个回答
2014-04-06
展开全部
证明:
连结AC,
因为AD=DC,∠ADC=60° 则△ACD是等边三角形.
过B作BE⊥AB,使BE=BC,
连结CE,AE 则∠EBC=90°-∠ABC=90°-30°=60° ∴△BCE是正三角形,
又∠ACE=∠ACB+∠BCE =∠ACB+60° ∠DCB=∠ACB+∠ACD =∠ACB+60°
∴∠ACE=∠DCB 又DC=AC,BC=CE
所以△DCB≌△ACE 所以AE=BD
在直角三角形ABE中AE^2=AB^2+BE^2 即BD^2=AB^2+BC^2
连结AC,
因为AD=DC,∠ADC=60° 则△ACD是等边三角形.
过B作BE⊥AB,使BE=BC,
连结CE,AE 则∠EBC=90°-∠ABC=90°-30°=60° ∴△BCE是正三角形,
又∠ACE=∠ACB+∠BCE =∠ACB+60° ∠DCB=∠ACB+∠ACD =∠ACB+60°
∴∠ACE=∠DCB 又DC=AC,BC=CE
所以△DCB≌△ACE 所以AE=BD
在直角三角形ABE中AE^2=AB^2+BE^2 即BD^2=AB^2+BC^2
更多追问追答
追问
过B作BE⊥AB?是不是弄错了?
追答
没错~
来自:求助得到的回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询