微分方程y'=e^x+y满足条件y(0)=0的特解为

混子2024
2010-12-30 · TA获得超过9728个赞
知道大有可为答主
回答量:1844
采纳率:87%
帮助的人:914万
展开全部
freedombless ,你好:
这个题很简单, y'=e^x+y ,变为y'-y=e^x,方程两端同乘以e^(-x),就变为e^(-x)y'-ye^(-x)=1,而此等式左端凑微分为 [y*e^(-x)]',两边同时积分得 ye^(-x)=x+c ,这个求通解的过程叫积分因子法。
上式为通解,当初始条件y(0)=0时,交x=0,y=0,代入上式得c=0,故原微分方程的特解为y=xe^x.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式