天猫商城旗舰店销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)

天猫商城旗舰店销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:,在销售过程中销售单价不低于成本价,... 天猫商城旗舰店销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数: ,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设该旗舰店每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?(3)如果旗舰店想要每月获得的利润不低于2000元,那么每月的成本最少需要 元?(成本=进价×销售量) 展开
 我来答
夏至vjula
2014-10-14 · 超过64用户采纳过TA的回答
知道答主
回答量:139
采纳率:50%
帮助的人:59.7万
展开全部
(1)w=-10x 2 +700x-10000(20≤x≤32);(2)当销售单价定为32元时,每月可获得最大利润,最大利润是2160元;(3)3600.


试题分析:(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价-进价)×销售量,从而列出关系式;
(2)首先确定二次函数的对称轴,然后根据其增减性确定最大利润即可;
(3)根据抛物线的性质和图象,求出每月的成本.
试题解析:(1)由题意,得:w=(x-20)?y=(x-20)?(-10x+500)=-10x 2 +700x-10000,
即w=-10x 2 +700x-10000(20≤x≤32).
(2)对于函数w=-10x 2 +700x-10000的图象的对称轴是直线
又∵a=-10<0,抛物线开口向下.∴当20≤x≤32时,W随着X的增大而增大.
∴当x=32时,W=2160.
答:当销售单价定为32元时,每月可获得最大利润,最大利润是2160元.
(3)取W=2000得,-10x 2 +700x-10000=2000
解这个方程得:x 1 =30,x 2 =40.
∵a=-10<0,抛物线开口向下.
∴当30≤x≤40时,w≥2000.
∵20≤x≤32,∴当30≤x≤32时,w≥2000.
设每月的成本为P(元),由题意,得:P=20(-10x+500)=-200x+10000,
∵k=-200<0,∴P随x的增大而减小.
∴当x=32时,P的值最小,P 最小值 =3600.
答:想要每月获得的利润不低于2000元,小明每月的成本最少为3600元.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式