否命题有哪些形式?
原命题为:若a,则b;
逆命题为:若b,则a;
否命题为:若非a,则非b;
逆否命题为:若非b,则非a。
1、否命题是数学中的一个概念。一般的,在数学中把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。
对于两个命题,若其中一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,则这两个命题互为否命题。如果把其中一个称为原命题,那么另一个就叫做它的否命题。
2、如果两个命题中一个命题的条件和结论分别是另一个命题的结论和条件的否定,则这两个命题称互为逆否命题。命题的否定只否结论。
一个命题为原命题,则和它互为逆否命题的命题为原命题的逆否命题。原命题和逆否命题为等价命题.如果原命题成立,逆否命题成立。逆命题和否命题为等价命题,如果逆命题成立,否命题成立。
3、一般的,在数学中把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。
扩展资料
1、否命题
(1)否命题与原命题可同真同假, 也可一真一假。
(2)否命题与逆命题等价,若逆命题为真,则否命题为真;反之,若逆命题为假,则否命题为假。
2、逆命题具有性质:原命题为真,它的逆命题不一定为真。例如:
原命题:若a=0,则ab=0,这是一个真命题;
逆命题:若ab=0,则a=0,这是一个假命题。
3、逆否命题
逻辑学认为命题与逆否命题是等价的,也就是命题真,则逆否命题也真。命题同它的逆否命题等价是作为公理存在的,你既不能证明它正确也不能证明它错误。其实这个东西可以认为是公理。它和公理“矛盾律”是等价的。 我们数学的体系就是建立在这些公理之上。
参考资料来源:百度百科-逆命题
参考资料来源:百度百科-逆否命题
参考资料来源:百度百科-否命题