A,B为同阶正定矩阵,怎样证明A+B正定?
3个回答
展开全部
【解答】
因为A,B正定,则 AT=A,BT=B,且 xTAx>0,xTBx>0
(A+B)T=AT+BT=A+B,对称矩阵
xT(A+B)x = xTAx+xTBx > 0
所以A+B正定。
【评注】
证明矩阵A正定,首先要证明AT=A
正定的【充分必要】条件条件有:
1、特征值大于0
2、与E合同
3、存在可逆矩阵B,A=BTB
4、正惯性指数 为n
5、各阶顺序主子式均大于0
6、对于任意x≠0,xTAx>0
newmanhero 2015年3月13日22:06:15
希望对你有所帮助,望采纳。
因为A,B正定,则 AT=A,BT=B,且 xTAx>0,xTBx>0
(A+B)T=AT+BT=A+B,对称矩阵
xT(A+B)x = xTAx+xTBx > 0
所以A+B正定。
【评注】
证明矩阵A正定,首先要证明AT=A
正定的【充分必要】条件条件有:
1、特征值大于0
2、与E合同
3、存在可逆矩阵B,A=BTB
4、正惯性指数 为n
5、各阶顺序主子式均大于0
6、对于任意x≠0,xTAx>0
newmanhero 2015年3月13日22:06:15
希望对你有所帮助,望采纳。
推荐于2016-08-20 · 知道合伙人生活技巧行家
关注
展开全部
因为 A,B都是正定矩阵
所以对任意n维列向量 x≠0, x'Ax>0, x'Bx>0
所以 x'(A+B)x = x'Ax + x'Bx >0
所以 A+B 是正定矩阵.
所以对任意n维列向量 x≠0, x'Ax>0, x'Bx>0
所以 x'(A+B)x = x'Ax + x'Bx >0
所以 A+B 是正定矩阵.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2015-03-11
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |