例.正方体ABCD—A1B1C1D1 中,若E、F分别是AB、CC1的中点,则异面直线A1C与EF所成角的余弦值为( )
例.正方体ABCD—A1B1C1D1中,若E、F分别是AB、CC1的中点,则异面直线A1C与EF所成角的余弦值为()...
例.正方体ABCD—A1B1C1D1 中,若E、F分别是AB、CC1的中点,则异面直线A1C与EF所成角的余弦值为( )
展开
2个回答
展开全部
解:连接A1C1,设A1C1中点为M,连接MF,ME
在△A1C1C中:
∵M、F分别为A1C1、CC1中点
∴MF是△A1C1C的中位线
∴MF//A1C
∴A1C与EF所成角就是MF与EF所成角,即∠MFE
设N是A1D1中点,连接MN、AN、CE,设AA1长度为1
∵AE=MN,且AE//MN
∴四边形AEMN是平行四边形
∴ME=AN
由勾股定理可知:AN²=A1N²+AA1²=5/4,∴ME²=5/4
MF²=C1M²+C1F²=3/4
EF²=FC²+CE²=3/2
在△FEM中:
cos∠MFE=(MF²+EF²-ME²)/(2*MF*EF)=√2/3
即异面直线A1C与EF所成角的余弦值为√2/3
在△A1C1C中:
∵M、F分别为A1C1、CC1中点
∴MF是△A1C1C的中位线
∴MF//A1C
∴A1C与EF所成角就是MF与EF所成角,即∠MFE
设N是A1D1中点,连接MN、AN、CE,设AA1长度为1
∵AE=MN,且AE//MN
∴四边形AEMN是平行四边形
∴ME=AN
由勾股定理可知:AN²=A1N²+AA1²=5/4,∴ME²=5/4
MF²=C1M²+C1F²=3/4
EF²=FC²+CE²=3/2
在△FEM中:
cos∠MFE=(MF²+EF²-ME²)/(2*MF*EF)=√2/3
即异面直线A1C与EF所成角的余弦值为√2/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询