已知f(x)是奇函数,周期为a,证明对称轴为4a.怎么证?
1个回答
展开全部
由已知得,x∈R,f(x)=-f(-x),f(a+x)=f(a-x);
解 f[a+(3a+x)]=f[a-(3a+x)]
即f(4a+x)=f(-2a-x)=-f(2a+x)=-f[a+(a+x)]=-f(a+x)
所以有f(4a+x)=-f(a+x)
f[a+(3a-x)]=f[a-(3a-x)]
即f(4a-x)=f(-2a+x)=-f(2a-x)=-f[a+(a-x)]=-f(a-x)
所以有f(4a-x)=-f(a-x)
又因为f(a+x)=f(a-x);所以f(4a+x)=f(4a-x),即有对称轴4a
解 f[a+(3a+x)]=f[a-(3a+x)]
即f(4a+x)=f(-2a-x)=-f(2a+x)=-f[a+(a+x)]=-f(a+x)
所以有f(4a+x)=-f(a+x)
f[a+(3a-x)]=f[a-(3a-x)]
即f(4a-x)=f(-2a+x)=-f(2a-x)=-f[a+(a-x)]=-f(a-x)
所以有f(4a-x)=-f(a-x)
又因为f(a+x)=f(a-x);所以f(4a+x)=f(4a-x),即有对称轴4a
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询