已知函数f(x)=lnx-ax+(1-a)/x-1,设g(x)=x^2-2bx+4时,当a=1/4时,若对任意0<X1<2,
展开全部
当a=1/4时,在f(x)(0,1)上是减函数在(1,2)上是单调递增
所以对任意0<x1<2,有f(x1)≥f(1)=-1/悄竖2
又已知存在1≤x2≤2,使f(x2)≥g(x2)
so-1/2≥g(x2),1≤x2≤2,
即存在1≤x≤2,使g(x)=x²-2bx+4≤-1/2
得到2bx≥x²+9/2,
即2b≥x+9x/2,在【11/2,17/4】范围内
所以做数2b≥11/2,解得b≥11/4,
即实数b取值启胡大范围是[11/4,+∞]。
所以对任意0<x1<2,有f(x1)≥f(1)=-1/悄竖2
又已知存在1≤x2≤2,使f(x2)≥g(x2)
so-1/2≥g(x2),1≤x2≤2,
即存在1≤x≤2,使g(x)=x²-2bx+4≤-1/2
得到2bx≥x²+9/2,
即2b≥x+9x/2,在【11/2,17/4】范围内
所以做数2b≥11/2,解得b≥11/4,
即实数b取值启胡大范围是[11/4,+∞]。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询