在Rt△ABC中∠ACB=90°,AC=2,BC=4,点D在BC边上且∠CAD=∠B
4个回答
展开全部
(1)因为∠CAD=∠B
∠ACD=∠BCA=90°
AC=AC
所以△ACD相似于△BCA
所以AC:BC=AD:AB
因为Rt△ACB中AB=2根号下5
所以AD=根号下5
(2)因为E,F分别为AD和AB的中点
所以在Rt△ACD中斜边AD上的中线CE为AD长度的一半即CE:AD=1:2
同理可得CF:AB=1:2
又有△ABD中EF为中位线,所以EF:BD=1:2
所以CE:AD=CF:AB=EF:BD=1:2
所以△CEF∽△ADB
∠ACD=∠BCA=90°
AC=AC
所以△ACD相似于△BCA
所以AC:BC=AD:AB
因为Rt△ACB中AB=2根号下5
所以AD=根号下5
(2)因为E,F分别为AD和AB的中点
所以在Rt△ACD中斜边AD上的中线CE为AD长度的一半即CE:AD=1:2
同理可得CF:AB=1:2
又有△ABD中EF为中位线,所以EF:BD=1:2
所以CE:AD=CF:AB=EF:BD=1:2
所以△CEF∽△ADB
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
在Rt△ABC中∠ACB=90°,AC=2,BC=4得AB=√(AC²+BC²)=2√5
∠ACB=90° ∠CAD=∠B得△ACD∽△ BCA 得AC/BC=AD/AB AD=√5
在Rt△ABC中∠ACB=90°,取AD.AB的中点E.F连接CE.CF.EF得EF/BD=1/2,CF=1/2AD,CE=1/2AB 得EF/BD=CF/AD=CE/AB =1/2 得 △CEF∽△ADB
∠ACB=90° ∠CAD=∠B得△ACD∽△ BCA 得AC/BC=AD/AB AD=√5
在Rt△ABC中∠ACB=90°,取AD.AB的中点E.F连接CE.CF.EF得EF/BD=1/2,CF=1/2AD,CE=1/2AB 得EF/BD=CF/AD=CE/AB =1/2 得 △CEF∽△ADB
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
⑴因为∠ACB=90°,∠CAD=∠B
所以Rt△DAC∽Rt△ABC
→AC/AD=BC/BA
AD= 根号5
⑵因为AD.AB的中点E.F
所以CE=1/2AD
EF=1/2DB
CF=1/2AB
所以△CEF∽△ADB
所以Rt△DAC∽Rt△ABC
→AC/AD=BC/BA
AD= 根号5
⑵因为AD.AB的中点E.F
所以CE=1/2AD
EF=1/2DB
CF=1/2AB
所以△CEF∽△ADB
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询