求证:函数f(x)=-1/x+1在区间(0,+∞)上是单调增函数
2个回答
2011-02-14 · 知道合伙人教育行家
关注
展开全部
分析:
∵1/x在定义域上单调减
∴-1/x 在定义域上单调增
∴-1/x +1在定义域上单调增。
证明:
令0<x1<x2
f(x2)-f(x1)
=(-1/x2 +1) -(-1/x1 +1)
=-1/x2 + 1/x1
=(x2-x1)/(x1x2)
∵0<x1<x2
∴(x2-x1)>0,x1x2>0
∴(x2-x1)/(x1x2)>0
∴f(x2)>f(x1)
∴f(x)=-1/x+1在区间(0,+∞)上是单调增函数
∵1/x在定义域上单调减
∴-1/x 在定义域上单调增
∴-1/x +1在定义域上单调增。
证明:
令0<x1<x2
f(x2)-f(x1)
=(-1/x2 +1) -(-1/x1 +1)
=-1/x2 + 1/x1
=(x2-x1)/(x1x2)
∵0<x1<x2
∴(x2-x1)>0,x1x2>0
∴(x2-x1)/(x1x2)>0
∴f(x2)>f(x1)
∴f(x)=-1/x+1在区间(0,+∞)上是单调增函数
威孚半导体技术
2024-08-19 广告
2024-08-19 广告
威孚(苏州)半导体技术有限公司是一家专注生产、研发、销售晶圆传输设备整机模块(EFEM/SORTER)及核心零部件的高科技半导体公司。公司核心团队均拥有多年半导体行业从业经验,其中技术团队成员博士、硕士学历占比80%以上,依托丰富的软件底层...
点击进入详情页
本回答由威孚半导体技术提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询