一道高中数学题 急求解!!在线等!!! 已知f(x)=sin方x+acosx+5/8a-3/2,a∈R. 5
已知f(x)=sin方x+acosx+5/8a-3/2,a∈R.1)当a=1时,求函数f(x)的最大值;2)如果对于区间[0,π/2]上的任意一个x,都有f(x)≤1成立...
已知f(x)=sin方x+acosx+5/8a-3/2,a∈R.
1)当a=1时,求函数f(x)的最大值;
2)如果对于区间[0,π/2]上的任意一个x,都有f(x)≤1成立,求a的取值范围。 展开
1)当a=1时,求函数f(x)的最大值;
2)如果对于区间[0,π/2]上的任意一个x,都有f(x)≤1成立,求a的取值范围。 展开
6个回答
展开全部
解:
(1)当a=1时f(x)=sin²x+cosx-7/8
对f(x)求导,得:
f′(x)=2sinxcosx-sinx=sinx(2cosx-1)
令f′(x)=0,得:sinx=0或cosx=1/2
分析其一个周期x∈[0,2π]
当x∈(0,π/3)时,f′(x)>0,f(x)单调递增
当x∈(π/3,π)时f′(x)<0,f(x)单调递减
当x∈(π,5π/3)时,f′(x)>0,f(x)单调递增
当x∈(5π/3,2π)时,f′(x)<0,f(x)单调递减
比较两个极大值f(π/3)和f(5π/3)得:
f(5π/3)=f(π/3)=3/8
所以当a=1时,f(x)的最大值为3/8
(2)
令t=cosx,则1-t²=sin²x,对于x∈[0,π/2],有t∈[0,1]
于是f(x)=1-t²+at+(5/8)a-3/2=-t²+at+(5/8)a-1/2
令g(t)=-t²+at+(5/8)a-1/2,当g(t)取得最大值时,对应的f(x)也能取得相等的最大值
对g(t)求导,得:g′(t)=a-2t
当a≤0时,对于t∈[0,1]有g′(t)≤0,g(t)在t∈[0,1]上单调递减
于是当t=0时g(t)取得最大值g(0)=(5/8)a-3/2<0,符合题设
当a>2时,g′(t)在t∈[0,1]上为正,g(t)在t∈[0,1]上单调递增,
于是当t=1时g(t)取得最大值g(1)=(13/8)a-3/2
令(13/8)a-3/2≤1,得:a≤20/13<2,不符合
当0<a≤2时,g′(t)在t∈[0,a/2)时为正,在t∈(a/2,1]时为负
于是当t∈[0,a/2)时,g(t)单调递增;当t∈(a/2,1]时,g(t)单调递减
当t=a/2时g(t)取得最大值g(a/2)=a²/4+(5/8)a-1/2
令g(a/2)≤1,得a²/4+(5/8)a-3/2≤0,
即2a²+5a-12≤0,(2a-3)(a+4)≤0
解出-4≤a≤3/2,于是0<a≤3/2
∴所求a的范围是a≤3/2
(1)当a=1时f(x)=sin²x+cosx-7/8
对f(x)求导,得:
f′(x)=2sinxcosx-sinx=sinx(2cosx-1)
令f′(x)=0,得:sinx=0或cosx=1/2
分析其一个周期x∈[0,2π]
当x∈(0,π/3)时,f′(x)>0,f(x)单调递增
当x∈(π/3,π)时f′(x)<0,f(x)单调递减
当x∈(π,5π/3)时,f′(x)>0,f(x)单调递增
当x∈(5π/3,2π)时,f′(x)<0,f(x)单调递减
比较两个极大值f(π/3)和f(5π/3)得:
f(5π/3)=f(π/3)=3/8
所以当a=1时,f(x)的最大值为3/8
(2)
令t=cosx,则1-t²=sin²x,对于x∈[0,π/2],有t∈[0,1]
于是f(x)=1-t²+at+(5/8)a-3/2=-t²+at+(5/8)a-1/2
令g(t)=-t²+at+(5/8)a-1/2,当g(t)取得最大值时,对应的f(x)也能取得相等的最大值
对g(t)求导,得:g′(t)=a-2t
当a≤0时,对于t∈[0,1]有g′(t)≤0,g(t)在t∈[0,1]上单调递减
于是当t=0时g(t)取得最大值g(0)=(5/8)a-3/2<0,符合题设
当a>2时,g′(t)在t∈[0,1]上为正,g(t)在t∈[0,1]上单调递增,
于是当t=1时g(t)取得最大值g(1)=(13/8)a-3/2
令(13/8)a-3/2≤1,得:a≤20/13<2,不符合
当0<a≤2时,g′(t)在t∈[0,a/2)时为正,在t∈(a/2,1]时为负
于是当t∈[0,a/2)时,g(t)单调递增;当t∈(a/2,1]时,g(t)单调递减
当t=a/2时g(t)取得最大值g(a/2)=a²/4+(5/8)a-1/2
令g(a/2)≤1,得a²/4+(5/8)a-3/2≤0,
即2a²+5a-12≤0,(2a-3)(a+4)≤0
解出-4≤a≤3/2,于是0<a≤3/2
∴所求a的范围是a≤3/2
展开全部
1.当a=1时,f(x)=sin方x+cosx+5/8-3/2=-(cosx)^2+cosx+7/8
设cos=t,-1<=t<=1
f(t)=-t^2+t+7/8
求这个关于t的二次函数的在指定区间上的最值即可,答案为9/8
2.同样的道理,先化解,然后换元,只是这个时候的0<=t<=1,求最大值,然后小于等于1,进而计算a的取值,需要分类讨论。
你自己做一下。慢慢体会二次函数的图像和性质
设cos=t,-1<=t<=1
f(t)=-t^2+t+7/8
求这个关于t的二次函数的在指定区间上的最值即可,答案为9/8
2.同样的道理,先化解,然后换元,只是这个时候的0<=t<=1,求最大值,然后小于等于1,进而计算a的取值,需要分类讨论。
你自己做一下。慢慢体会二次函数的图像和性质
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-02-15
展开全部
1 当a=1时 原式为 f(x)=sin方x+cosx-7/8
又 sin方=1-cos方x
所以 f(x)=1-cos方x+cosx-7/8
=-cos方x+cosx+1/8
=-(cosx-1/2)方+3/8
所以 函数fx的最大值为3/8
2 由题意得: f(x)=-(cosx-a/2)方+5/8a-3/2
又cosx在区间[0,π/2]上是单调递减的
f(x)≤1
即:-(cosx-a/2)方+5/8a-5/2≤0
所以5/8a-5/2≤0
解得a≤4
又 sin方=1-cos方x
所以 f(x)=1-cos方x+cosx-7/8
=-cos方x+cosx+1/8
=-(cosx-1/2)方+3/8
所以 函数fx的最大值为3/8
2 由题意得: f(x)=-(cosx-a/2)方+5/8a-3/2
又cosx在区间[0,π/2]上是单调递减的
f(x)≤1
即:-(cosx-a/2)方+5/8a-5/2≤0
所以5/8a-5/2≤0
解得a≤4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:
f(x)=sin方x+acosx+5/8a-3/2
f(x)=1-cos方x+acosx+5/8a-3/2
当a=1时,f(x)=1-cos方x+cosx+5/8-3/2,则
f(x)=-cos方x+cosx+1/8
由于-1≤cosx≤1
当cosx=1/2时,f(x)有最大值,等于3/8;
第二问,类似!!
f(x)=sin方x+acosx+5/8a-3/2
f(x)=1-cos方x+acosx+5/8a-3/2
当a=1时,f(x)=1-cos方x+cosx+5/8-3/2,则
f(x)=-cos方x+cosx+1/8
由于-1≤cosx≤1
当cosx=1/2时,f(x)有最大值,等于3/8;
第二问,类似!!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1
a=1
f(x)=(sinx)^2+cosx+5/8-3/2
=-(cosx)^2+cosx+1/8
=-(cosx+1/2)^2+1/8+1/4
=-(cosx+1/2)^2+3/8
(cosx+1/2)^2≥0
f(x)≤3/8
2
f(x)=(sinx)^2+acosx+5a/8-3/2
=-(cosx)^2+acosx+5a/8-1/2
=-(cosx-a/2)^2+5a/8-1/2+a^2/4
如果对于区间[0,π/2]上的任意一个x,都有f(x)≤1成立,
区间[0,π/2]上的任意一个x
0≤cosx≤1,x=0时,cosx=1,f(x)最大
f(x)=-(1-a/2)^2+5a/8-1/2+a^2/4
=-1-a^2/4+a+5a/8-1/2+a^2/4
=-3/2+13a/8
f(x)≤1
-3/2+13a/8≤1
13a/8≤5/2
a≤20/13
a=1
f(x)=(sinx)^2+cosx+5/8-3/2
=-(cosx)^2+cosx+1/8
=-(cosx+1/2)^2+1/8+1/4
=-(cosx+1/2)^2+3/8
(cosx+1/2)^2≥0
f(x)≤3/8
2
f(x)=(sinx)^2+acosx+5a/8-3/2
=-(cosx)^2+acosx+5a/8-1/2
=-(cosx-a/2)^2+5a/8-1/2+a^2/4
如果对于区间[0,π/2]上的任意一个x,都有f(x)≤1成立,
区间[0,π/2]上的任意一个x
0≤cosx≤1,x=0时,cosx=1,f(x)最大
f(x)=-(1-a/2)^2+5a/8-1/2+a^2/4
=-1-a^2/4+a+5a/8-1/2+a^2/4
=-3/2+13a/8
f(x)≤1
-3/2+13a/8≤1
13a/8≤5/2
a≤20/13
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-02-15 · 知道合伙人教育行家
关注
展开全部
1)f(x)=1-cos方x+cosx+5/8-3/2=-(cosx-1/2)方+1/4+1/8
f(x)max=3/8
2)f(x)=1-cos方x+acosx+a5/8-3/2=-(cosx-1/2a)方+1/4a方 +a5/8-1/2
对于区间[0,π/2]上的任意一个x,都有f(x)≤1成立
当-2≤a≤2时,有
1/4a方 +a5/8-1/2≤1
解得-2≤a≤3/2
当a<-2时有
-(-1-1/2a)方+1/4a方 +a5/8-1/2≤1
解得-20/3≤a<-2
当 a>2时有
-(1-1/2a)方+1/4a方 +a5/8-1/2≤1
解得a≤20/13(舍去)
故如果对于区间[0,π/2]上的任意一个x,都有f(x)≤1成立,a的取值范围是
-20/3≤a<3/2
f(x)max=3/8
2)f(x)=1-cos方x+acosx+a5/8-3/2=-(cosx-1/2a)方+1/4a方 +a5/8-1/2
对于区间[0,π/2]上的任意一个x,都有f(x)≤1成立
当-2≤a≤2时,有
1/4a方 +a5/8-1/2≤1
解得-2≤a≤3/2
当a<-2时有
-(-1-1/2a)方+1/4a方 +a5/8-1/2≤1
解得-20/3≤a<-2
当 a>2时有
-(1-1/2a)方+1/4a方 +a5/8-1/2≤1
解得a≤20/13(舍去)
故如果对于区间[0,π/2]上的任意一个x,都有f(x)≤1成立,a的取值范围是
-20/3≤a<3/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询