已知x、y∈R+,x^3+y^3=2,求x+y的最大值
1个回答
展开全部
解:先进行因式分解,得:
x³+y³
=(x+y)(x²-xy+y²)
=(x+y)[(x+y)²-3xy]=2···········①
由于(x-y)²≥0,展开即得:
2xy≤x²+y²
4xy≤x²+2xy+y²
4xy≤(x+y)²
xy≤(x+y)²/4
上式两边同时乘以-3,得
-3xy≥-3(x+y)²/4
将上式代入①式可得:
2=(x+y)[(x+y)²-3xy]
≥(x+y)[(x+y)²-3(x+y)²/4]
=(x+y)[(x+y)²/4]
=(x+y)³/4
即:(x+y)³≤8,
因此,x+y≤2,故x+y的最大值为2。
x³+y³
=(x+y)(x²-xy+y²)
=(x+y)[(x+y)²-3xy]=2···········①
由于(x-y)²≥0,展开即得:
2xy≤x²+y²
4xy≤x²+2xy+y²
4xy≤(x+y)²
xy≤(x+y)²/4
上式两边同时乘以-3,得
-3xy≥-3(x+y)²/4
将上式代入①式可得:
2=(x+y)[(x+y)²-3xy]
≥(x+y)[(x+y)²-3(x+y)²/4]
=(x+y)[(x+y)²/4]
=(x+y)³/4
即:(x+y)³≤8,
因此,x+y≤2,故x+y的最大值为2。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询