某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且
某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:AB成...
某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:
A B
成本(万元/套) 25 28
售价(万元/套) 30 34
(1)该公司对这两种户型住房有哪几种建房方案?
(2)该公司如何建房获得利润最大?
(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?(注:利润=售价-成本) 展开
A B
成本(万元/套) 25 28
售价(万元/套) 30 34
(1)该公司对这两种户型住房有哪几种建房方案?
(2)该公司如何建房获得利润最大?
(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?(注:利润=售价-成本) 展开
2个回答
展开全部
(10分)解:(1)设A种户型的住房建x套,则B种户型的住房建(80-x)套.
由题意知2090≤25x+28(80-x)≤2096 48≤x≤50
∵ x取非负整数, ∴ x为48,49,50. ∴ 有三种建房方案:
A型48套,B型32套;A型49套,B型31套;A型50套,B型30套
(2)设该公司建房获得利润W(万元).
由题意知W=5x+6(80-x)=480-x
∴ 当x=48时,W最大=432(万元)
即A型住房48套,B型住房32套获得利润最大
(3)由题意知W=(5+a)x+6(80-x)=480+(a-1)x,
∴ 当O<a<l时, x=48,W最大,
即A型住房建48套,B型住房建32套,
当a=l时,a-1=O,三种建房方案获得利润相等
当a>1时,x=50,W最大,即A型住房建50套,B型住房建30套
由题意知2090≤25x+28(80-x)≤2096 48≤x≤50
∵ x取非负整数, ∴ x为48,49,50. ∴ 有三种建房方案:
A型48套,B型32套;A型49套,B型31套;A型50套,B型30套
(2)设该公司建房获得利润W(万元).
由题意知W=5x+6(80-x)=480-x
∴ 当x=48时,W最大=432(万元)
即A型住房48套,B型住房32套获得利润最大
(3)由题意知W=(5+a)x+6(80-x)=480+(a-1)x,
∴ 当O<a<l时, x=48,W最大,
即A型住房建48套,B型住房建32套,
当a=l时,a-1=O,三种建房方案获得利润相等
当a>1时,x=50,W最大,即A型住房建50套,B型住房建30套
展开全部
分析:(1)首先设A种户型的住房建x套,则B种户型的住房建(80-x)套,然后根据题意列方程组,解方程组可求得x的取值范围,又由x取非负整数,即可求得x的可能取值,则可得到三种建房方案;
(2)设该公司建房获得利润W万元,根据题意可得W与x的一次函数关系式,则可求得何时获得利润最大;
(3)与(2)类似,首先求得W与x函数关系式,再由a的取值,即可确定如何建房获得利润最大.解答:解:(1)设A种户型的住房建x套,则B种户型的住房建(80-x)套.
根据题意,得
{25x+28(80-x)≥2090 25x+28(80-x)≤2096,
解得48≤x≤50.
∵x取非负整数,
∴x为48,49,50.
∴有三种建房方案:
方案① 方案② 方案③A型 48套 49套 50套
B型 32套 31套 30套
(2)设该公司建房获得利润W万元.
由题意知:W=5x+6(80-x)=480-x,
∵k=-1,W随x的增大而减小,
∴当x=48时,即A型住房建48套,B型住房建32套获得利润最大.
(3)根据题意,得W=5x+(6-a)(80-x)=(a-1)x+480-80a.
∴当0<a<l时,x=48,W最大,即A型住房建48套,B型住房建32套.
当a=l时,a-1=0,三种建房方案获得利润相等.
当1<a<6时,x=50,W最大,即A型住房建50套,B型住房建30套.
(2)设该公司建房获得利润W万元,根据题意可得W与x的一次函数关系式,则可求得何时获得利润最大;
(3)与(2)类似,首先求得W与x函数关系式,再由a的取值,即可确定如何建房获得利润最大.解答:解:(1)设A种户型的住房建x套,则B种户型的住房建(80-x)套.
根据题意,得
{25x+28(80-x)≥2090 25x+28(80-x)≤2096,
解得48≤x≤50.
∵x取非负整数,
∴x为48,49,50.
∴有三种建房方案:
方案① 方案② 方案③A型 48套 49套 50套
B型 32套 31套 30套
(2)设该公司建房获得利润W万元.
由题意知:W=5x+6(80-x)=480-x,
∵k=-1,W随x的增大而减小,
∴当x=48时,即A型住房建48套,B型住房建32套获得利润最大.
(3)根据题意,得W=5x+(6-a)(80-x)=(a-1)x+480-80a.
∴当0<a<l时,x=48,W最大,即A型住房建48套,B型住房建32套.
当a=l时,a-1=0,三种建房方案获得利润相等.
当1<a<6时,x=50,W最大,即A型住房建50套,B型住房建30套.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询