设a,b,c,d都是整数,且m=a²+b²,n=c²+d²,试将mn表示成两个整数的平方和
5个回答
展开全部
由题可知,mn=(a²+b²)(c²+d²)=a²c²+a²d²+b²c²+b²d²=a²c²+b²d²+2abcd+a²d²+b²c²-2abcd=(ac+bd)²+(ad-bc)²
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:mn=(a²+b²)(c²+d²)
=a²c²+a²d²+b²c²+c²d²
=(a²c²-2abcd+b²d²)+(a²d²+2abcd+b²c²)
=(ac-bd)²+(ad+bc)²
证毕!
=a²c²+a²d²+b²c²+c²d²
=(a²c²-2abcd+b²d²)+(a²d²+2abcd+b²c²)
=(ac-bd)²+(ad+bc)²
证毕!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
m=a²+b²
n=c²+d²
mn=(a²+b²)(c²+d²)
=a²c²+a²d²+b²c²+b²d²
=(a²c²-2abcd+b²d²)+(a²d²+2abcd+b²c²)
=(ac-bd)²+(ad-bc)²
n=c²+d²
mn=(a²+b²)(c²+d²)
=a²c²+a²d²+b²c²+b²d²
=(a²c²-2abcd+b²d²)+(a²d²+2abcd+b²c²)
=(ac-bd)²+(ad-bc)²
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
mn=(a^2+b^2)(c^2+d^2)=a^2c^2+b^2d^2+b^2c^2+a^2d^2=a^2c^2+b^2d^2+2abcd+b^2c^2+a^2d^2-2abcd=(ac+bd)^2+(bc-ad)^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(ac+bd)^2+(ad-bc)^2
追问
加个过程,谢谢
追答
m=a²+b²,n=c²+d²
mn=a²c²+a²d²+b²c²+b²d²
=(a²c²+b²d²+2abcd)+(a²d²+b²c²-2abcd)
=(ac+bd)^2+(ad-bc)^2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询