函数f(x)=sin(4x+3分之派)+cos(4x-6分之派)的最小正周期和递减区间
3个回答
展开全部
f(x)=sin(4x+π/3)+cos(4x-π/6)
=sin(4x+π-π/6)+cos(4x-π/6)
=sin(π+4x-π/6)+cos(4x-π/6)
=-sin(4x-π/6)+cos(4x-π/6)
=-√2[√2/2*sin(4x-π/6)+√2/2*cos(4x-π/6)]
=-√2[sin(4x-π/6)cosπ/4+cos(4x-π/6)sinπ/4]
=-√2sin(4x-π/6+π/4)
=-√2sin(4x+π/12)
T=2π/4=π/2
递减区间
2kπ+π/2<4x+π/12<2kπ+3π/2
2kπ+5π/12<4x<2kπ+17π/12
kπ/2+5π/48<x<kπ/2+17π/48
=sin(4x+π-π/6)+cos(4x-π/6)
=sin(π+4x-π/6)+cos(4x-π/6)
=-sin(4x-π/6)+cos(4x-π/6)
=-√2[√2/2*sin(4x-π/6)+√2/2*cos(4x-π/6)]
=-√2[sin(4x-π/6)cosπ/4+cos(4x-π/6)sinπ/4]
=-√2sin(4x-π/6+π/4)
=-√2sin(4x+π/12)
T=2π/4=π/2
递减区间
2kπ+π/2<4x+π/12<2kπ+3π/2
2kπ+5π/12<4x<2kπ+17π/12
kπ/2+5π/48<x<kπ/2+17π/48
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询