已知向量a=( sin(1/2)x,(根号3)/2 ).向量b=( 1/2,cos(1/2)x ),f(x)=向量a·向量b, (1)求函数y=f(x)
已知向量a=(sin(1/2)x,(根号3)/2).向量b=(1/2,cos(1/2)x),f(x)=向量a·向量b,(1)求函数y=f(x)的最小正周期及最大值(2)求...
已知向量a=( sin(1/2)x,(根号3)/2 ).向量b=( 1/2,cos(1/2)x ),f(x)=向量a·向量b,
(1)求函数y=f(x)的最小正周期及最大值
(2)求函数y=f(x)的单调递增区间
求过程与答案,O(∩_∩)O谢谢 展开
(1)求函数y=f(x)的最小正周期及最大值
(2)求函数y=f(x)的单调递增区间
求过程与答案,O(∩_∩)O谢谢 展开
1个回答
展开全部
解:
(1)
∵向量a=( sin(1/2)x,(√3)/2 ),向量b=( 1/2,cos(1/2)x )
∴f(x)=向量a·向量b=(1/2)sin(1/2)x+[(√3)/2 ]cos(1/2)x =sin(x/2+π/3)
∴函数y=f(x)的最小正周期T=2π/(1/2)=4π.
当且仅当x/2+π/3=π/2+2kπ(k∈Z),即x=π/3+4kπ(k∈Z)时,f(x)取得最大值1.
(2)
令-π/2+2kπ≤x/2+π/3≤π/2+2kπ(k∈Z),即-5π/3+4kπ≤x≤π/3+4kπ(k∈Z).
则函数y=f(x)的单调递增区间为-5π/3+4kπ≤x≤π/3+4kπ(k∈Z).
(1)
∵向量a=( sin(1/2)x,(√3)/2 ),向量b=( 1/2,cos(1/2)x )
∴f(x)=向量a·向量b=(1/2)sin(1/2)x+[(√3)/2 ]cos(1/2)x =sin(x/2+π/3)
∴函数y=f(x)的最小正周期T=2π/(1/2)=4π.
当且仅当x/2+π/3=π/2+2kπ(k∈Z),即x=π/3+4kπ(k∈Z)时,f(x)取得最大值1.
(2)
令-π/2+2kπ≤x/2+π/3≤π/2+2kπ(k∈Z),即-5π/3+4kπ≤x≤π/3+4kπ(k∈Z).
则函数y=f(x)的单调递增区间为-5π/3+4kπ≤x≤π/3+4kπ(k∈Z).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询