已知点P在曲线y=4/(e^x+1)上,a为曲线在点P处的切线的倾斜角,则a的取值范围是
y=4/[(e^x)+1]∴对x求导,最后得y'=(-4e^x)/(1+e^x)²=(-4)/[(e^x)+(1/e^x)+2]因为(e^x)+(1/e^x)≥...
y=4/[(e^x)+1]
∴对x求导,最后得
y'=(-4e^x)/(1+e^x)²
=(-4)/[(e^x)+(1/e^x)+2]
因为(e^x)+(1/e^x)≥2,当且仅当e^x=1/e^x,即x=0时取得等号,
∴-1≤y'<0,
因为y'就是倾斜角的正切值,
∴倾斜角的范围是[3π/4,π)
以上是解答,我想知道(e^x)+(1/e^x)≥2这部是为什么? 展开
∴对x求导,最后得
y'=(-4e^x)/(1+e^x)²
=(-4)/[(e^x)+(1/e^x)+2]
因为(e^x)+(1/e^x)≥2,当且仅当e^x=1/e^x,即x=0时取得等号,
∴-1≤y'<0,
因为y'就是倾斜角的正切值,
∴倾斜角的范围是[3π/4,π)
以上是解答,我想知道(e^x)+(1/e^x)≥2这部是为什么? 展开
4个回答
展开全部
(e^x)+(1/e^x)≥2的由闭皮来:逗戚(A-B)^2≥0推出A^2+B^2≥2AB(e^x/轿指差2-1/(e^x/2))^2≥0可以得到(e^x)+(1/e^x)≥2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为均值不等式 a^2 + b^2≥ 2ab
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询