
计算二重积分∫∫x²/(1+y²)dady D是0<=x<=1,0<=y<=1
1个回答
展开全部
∫∫x²/(1+y²)dxdy 0<=x<=1,0<=y<=1
=∫1/(1+y²) [x^3/3] dy 0<=x<=1,0<=y<=1
=(1/3)∫1/(1+y²)dy 0<=y<=1
let y = tana
dy =(seca)^2da
y=0, a=0
y=1, a=π/4
(1/3)∫1/(1+y²)dy 0<=y<=1
=(1/3)∫da 0<=a<=π/4
= π/12
=∫1/(1+y²) [x^3/3] dy 0<=x<=1,0<=y<=1
=(1/3)∫1/(1+y²)dy 0<=y<=1
let y = tana
dy =(seca)^2da
y=0, a=0
y=1, a=π/4
(1/3)∫1/(1+y²)dy 0<=y<=1
=(1/3)∫da 0<=a<=π/4
= π/12
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询